• Chinese Core Periodicals
  • Chinese Core Journals of Science and Technology
  • RCCSE Chinese Core Academic Journals
  • Netherlands Abstracts and Citations Database(Scopus)
  • Directory of Open Access Journals(DOAJ)
  • Chemical abstracts(CA)
  • Abstract Journal(РЖ,AJ)
  • Japan Science and Technology Agency(JST)
Advance Search
LIU Jun. Study on the stress and fracture evolution law of surrounding rock during mining of upper and lower protective layers in coal seams[J]. Mining Safety & Environmental Protection, 2024, 51(4): 56-63, 73. DOI: 10.19835/j.issn.1008-4495.20230342
Citation: LIU Jun. Study on the stress and fracture evolution law of surrounding rock during mining of upper and lower protective layers in coal seams[J]. Mining Safety & Environmental Protection, 2024, 51(4): 56-63, 73. DOI: 10.19835/j.issn.1008-4495.20230342

Study on the stress and fracture evolution law of surrounding rock during mining of upper and lower protective layers in coal seams

More Information
  • Received Date: April 24, 2023
  • Revised Date: July 19, 2023
  • To achieve efficient gas extraction from the pressure relief of the protected layer in the upper and lower protective layers of coal seam groups, numerical simulation methods were used to study the distribution and evolution of surrounding rock stress after the upper and lower protective layer mining. The depressurized gas rich area of upper and lower protective layer mining was identified. The results show that after mining, the lower protective layer and the pressure relief height of the overlying rock on the upper side of the working face are both significantly higher than in the lower side.After mining the upper protective layer again, the pressure relief range of the protected layer is increased.After the mining of the lower protective layer, the pressure relief angle of the protected layer is 63°. The inclined upper and lower boundary pressure relief angles are 87° and 72°, respectively. After mining the upper protective layer, the pressure relief angle of the protected layer is 59°. The inclined upper and lower boundary pressure relief angles are 76° and 79°, respectively. After the protective layer is depressurized, the net amount of gas extraction increases by dozens of times before the depressurization.The depressurized gas extraction has a significant spatiotemporal effect.

  • [1]
    袁亮. 低透高瓦斯煤层群安全开采关键技术研究[J]. 岩石力学与工程学报, 2008, 27(7): 1370-1379. doi: 10.3321/j.issn:1000-6915.2008.07.009

    YUAN Liang. Key technique of safe mining in low permeability and methane-rich seam group[J]. Chinese Journal of Rock Mechanics and Engineering, 2008, 27(7): 1370-1379. doi: 10.3321/j.issn:1000-6915.2008.07.009
    [2]
    石必明, 刘泽功. 保护层开采上覆煤层变形特性数值模拟[J]. 煤炭学报, 2008, 33(1): 17-22. doi: 10.3321/j.issn:0253-9993.2008.01.004

    SHI Biming, LIU Zegong. Numerical simulation of the upper coal and rock deformation characteristic caused by mining protecting stratum[J]. Journal of China Coal Society, 2008, 33(1): 17-22. doi: 10.3321/j.issn:0253-9993.2008.01.004
    [3]
    袁亮. 煤炭精准开采科学构想[J]. 煤炭学报, 2017, 42(1): 1-7.

    YUAN Liang. Scientific conception of precision coal mining[J]. Journal of China Coal Society, 2017, 42(1): 1-7.
    [4]
    赵鹏翔, 刘李东, 李树刚, 等. 煤层倾角对仰斜工作面覆岩压实区裂隙演化规律的影响[J]. 煤炭科学技术, 2021, 49(11): 65-72.

    ZHAO Pengxiang, LIU Lidong, LI Shugang, et al. Dip angle effect of coal seam on crack propagation rule of compacted area at fully-mechanized rise mining face[J]. Coal Science and Technology, 2021, 49(11): 65-72.
    [5]
    张春雷. 煤层群上行开采层间裂隙演化及卸压空间效应[D]. 北京: 中国矿业大学(北京), 2017.
    [6]
    李敏, 翟成, 贾惠侨, 等. 被保护层双重卸压特性研究[J]. 安全与环境学报, 2017, 17(3): 911-916.

    LI Min, ZHAI Cheng, JIA Huiqiao, et al. On the depressurized effect likely to be produced by the double pressure relief on the protective coal seam[J]. Journal of Safety and Environment, 2017, 17(3): 911- 916.
    [7]
    李敏, 翟成, 林柏泉, 等. 复合煤层群双重卸压应力时空演化规律研究[J]. 煤矿安全, 2015, 46(9): 39-43.

    LI Min, ZHAI Cheng, LIN Baiquan, et al. Study on space-time evolution of stress under double pressure relief in composite coal seam group[J]. Safety in Coal Mines, 2015, 46(9): 39-43.
    [8]
    周勇, 张占国, 程波, 等. 基于双重卸压效应的煤层气开发模式的研究[J]. 中国安全生产科学技术, 2014(增刊): 260-264.

    ZHOU Yong, ZHANG Zhanguo, CHENG Bo, et al. Study on development technology mode of coalbed methane based on the effect of double depressurization[J]. Joumal of Safety Science and Technology, 2014(S1): 260-264.
    [9]
    杨滨滨, 袁世冲, 郑德志, 等. 近距离煤层重复采动覆岩裂隙形态及其演化规律实验研究[J]. 采矿与安全工程学报, 2022, 39(2): 255-263.

    YANG Binbin, YUAN Shichong, ZHENG Dezhi, et al. Spatial and temporal characteristics of overburden fractures due to repeated mining in close distance coal seams[J]. Journal of Mining & Safety Engineering,2022,39(2):255-263.
    [10]
    李树清, 何学秋, 李绍泉, 等. 煤层群双重卸压开采覆岩移动及裂隙动态演化的实验研究[J]. 煤炭学报, 2013, 38(12): 2146-2152.

    LI Shuqing, HE Xueqiu, LI Shaoquan, et al. Experimental research on strata movement and fracture dynamic evolution of double pressure-relief mining in coal seams group[J]. Journal of China Coal Society, 2013, 38(12): 2146-2152.
    [11]
    林海飞, 李磊明, 李树刚, 等. 煤层群重复采动卸压瓦斯储运区演化规律实验研究[J]. 西安科技大学学报, 2021, 41(3): 385-393.

    LIN Haifei, LI Leiming, LI Shugang, et al. Experimental study on evolution law of pressure relief gas storage and transportation area of repeated mining in coal seams[J]. Journal of Xi'an University of Science and Technology, 2021, 41(3): 385-393.
    [12]
    罗建军. 双重保护层开采效果考察数值模拟研究[J]. 矿业安全与环保, 2015, 42(6): 10-13. https://link.cnki.net/urlid/50.1062.td.20151201.1142.006

    LUO Jianjun. Investigation and numerical simulation study on mining effect of double protective seam[J]. Mining Safety & Environmental Protection, 2015, 42(6): 10-13. https://link.cnki.net/urlid/50.1062.td.20151201.1142.006
    [13]
    赵灿, 程志恒, 刘晓刚, 等. 近距离煤层群保护层开采双重卸压效果分析[J]. 煤炭技术, 2016, 35(2): 40-42.

    ZHAO Can, CHENG Zhiheng, LIU Xiaogang, et al. Study on comparative analysis for protecting layer mining in close distance coal seams[J]. Coal Technology, 2016, 35(2): 40-42.
    [14]
    程志恒, 齐庆新, 李宏艳, 等. 近距离煤层群叠加开采采动应力-裂隙动态演化特征实验研究[J]. 煤炭学报, 2016, 41(2): 367-375.

    CHENG Zhiheng, QI Qingxin, LI Hongyan, et al. Evolution of the superimposed mining induced stress-fissure field under extracting of close distance coal seam group[J]. Journal of China Coal Society, 2016, 41(2): 367-375.
    [15]
    陈亮. 中远距离煤层群叠加开采双重卸压效应数值分析[J]. 煤炭工程, 2018, 50(7): 92-96.

    CHEN Liang. Numerical analysis on double relief effect under superposed mining of coal seam group with medium-distance[J]. Coal Engineering, 2018, 50(7): 92-96.
    [16]
    钱鸣高, 刘听成. 矿山压力及其控制[M]. 北京: 煤炭工业出版社, 1984.
    [17]
    钱鸣高, 许家林. 覆岩采动裂隙分布的"O" 形圈特征研究[J]. 煤炭学报, 1998(5): 20-23.

    QIAN Minggao, XU Jialin. Study on the "O" shape circle distribution characteristics of mining induced fractures in the overlaying strata[J]. Journal of China Coal Society, 1998(5): 20-23.
    [18]
    王伟, 程远平, 袁亮, 等. 深部近距离上保护层底板裂隙演化及卸压瓦斯抽采时效性[J]. 煤炭学报, 2016, 41(1): 138-148.

    WANG Wei, CHENG Yuanping, YUAN Liang, et al. Floor fracture evolution and relief gas drainage timeliness in deeper underground short-distance upper protective coal seam extraction[J]. Journal of China Coal Society, 2016, 41(1): 138-148.
    [19]
    王兆丰, 席杰, 陈金生, 等. 底板岩巷穿层钻孔一孔多用瓦斯抽采时效性研究[J]. 煤炭科学技术, 2021, 49(1): 248-256.

    WANG Zhaofeng, XI Jie, CHEN Jinsheng, et al. Study on time effectiveness of gas drainage by crossing layer drilling in floor rock roadway with one hole and multi-purpose[J]. Coal Science and Technology, 2021, 49(1): 248-256.
  • Related Articles

    [1]HUANG Wenxiang, LIU Xiaofan, LI Hong, WU Jiarui. Study on the evolution law of bed separation and aperture variation in overlying strata under multi-coal seam superimposed mining[J]. Mining Safety & Environmental Protection. DOI: 10.19835/j.issn.1008-4495.20250327
    [2]ZHANG Zhaoyi. Research and application of collaborative gas extraction technology for protective layer mining and pressure relief[J]. Mining Safety & Environmental Protection, 2024, 51(4): 74-79. DOI: 10.19835/j.issn.1008-4495.20230632
    [3]ZHANG Chuangye, WANG Xiaochuan, LYU Youchang, XU Chaoyu, LI Zhenxing. Pressure relief effect of mining disturbance in the lower protective layer and collaborative control technology of gas and coal spontaneous combustion[J]. Mining Safety & Environmental Protection, 2024, 51(3): 65-71, 77. DOI: 10.19835/j.issn.1008-4495.20230112
    [4]YANG Ke, SUN Xiaotian, LIU Shuai, GUO Penghui, ZHANG Zhainan. Pressure relief and permeability enhancement effect and gas extraction scheme of long-distance lower protective layer mining[J]. Mining Safety & Environmental Protection, 2024, 51(2): 1-9. DOI: 10.19835/j.issn.1008-4495.20230263
    [5]ZHANG Yongtao, ZHU Pengfei, LI Qingzhao, DOU Chengyi, DU Haohao. Study on the migration law of pressure relief gas based on dynamic evolution model of goaf porosity[J]. Mining Safety & Environmental Protection, 2023, 50(2): 1-6. DOI: 10.19835/j.issn.1008-4495.2023.02.001
    [6]MA Yanyang, WU Jiaokun, FENG Renjun, LI Liangwei. Pressure relief gas drainage by directional drilling hydraulic fracturing in hard roof[J]. Mining Safety & Environmental Protection, 2022, 49(6): 52-56. DOI: 10.19835/j.issn.1008-4495.2022.06.009
    [7]TAO Yunqi, ZHANG Jianzhao, GUO Minggong, YU Hong, PAN Renjie. Research and engineering practice of mining-induced pressure relief gas extraction of replacing roadway with borehole technology[J]. Mining Safety & Environmental Protection, 2022, 49(5): 43-48. DOI: 10.19835/j.issn.1008-4495.2022.05.008
    [8]WANG Guanghong. Application of ground well extraction technology in large dip and multiple coal group in Xinjiang mining area[J]. Mining Safety & Environmental Protection, 2021, 48(6): 82-85. DOI: 10.19835/j.issn.1008-4495.2021.06.015
    [9]ZHANG Shiling. Research on gas pressure evolution law based on mining stress increment[J]. Mining Safety & Environmental Protection, 2021, 48(6): 1-5. DOI: 10.19835/j.issn.1008-4495.2021.06.001
    [10]SONG Shuang, ZHANG Tianjun, LI Shugang, MA Li, PAN Shaobo. Design and Implementation of Evaluation System for Pressure Relief Gas Drainage in Goaf[J]. Mining Safety & Environmental Protection, 2019, 46(5): 85-89.
  • Cited by

    Periodical cited type(6)

    1. 魏佳男, 覃佐亚, 马宏宇. 东宏煤矿近距离突出煤层群区域瓦斯综合治理. 采矿技术. 2025(05)
    2. 王文杰, 陈立, 郝国强. 近距离突出煤层群上保护层重叠采动保护效果及范围研究. 煤炭与化工. 2025(08)
    3. 芦盛亮. 工作面不同回采阶段应力演化规律数值模拟研究. 煤. 2025(08)
    4. 韩云伟. 断层采动效果及裂隙演化规律分析. 凿岩机械气动工具. 2025(06)
    5. 张夏彭,王凯,周爱桃,易克全,李泽凡,王柯嘉. 中远距离煤层群保护层多次开采卸压效果研究. 煤矿安全. 2025(05): 100-113 .
    6. 杨贵儒,李红平,周雨,杨旭,刘江,王建淇,梁洪宝,卢安良,李振雷. 多煤层开采卸压防冲效果数值模拟研究. 工矿自动化. 2025(05): 96-104 .

    Other cited types(0)

Catalog

    Article views (138) PDF downloads (48) Cited by(6)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return