Citation: | YANG Ke, SUN Xiaotian, LIU Shuai, GUO Penghui, ZHANG Zhainan. Pressure relief and permeability enhancement effect and gas extraction scheme of long-distance lower protective layer mining[J]. Mining Safety & Environmental Protection, 2024, 51(2): 1-9. DOI: 10.19835/j.issn.1008-4495.20230263 |
In view of the difficulty of pressure relief and gas control of overlying protected layer after deep and long-distance lower protective layer mining, based on the engineering conditions of Ⅲ1031 working face in Zhuxianzhuang Coal Mine, the stress evolution law, deformation and failure characteristics and pressure relief and permeability enhancement effect of the overlying strata during long-distance lower protective layer mining were studied by means of similar simulation and numerical simulation.The results show that the protective layer mining produces a longitudinal penetrating fracture extending to the protected layer, and the main roof breaks periodically with an average step of about 15 m.The pressure of the coal seam decreases firstly, and the stress returns to the approximate original rock stress state after recompacting in the middle of the goaf.The stress-concentrated area is formed in the surrounding rock, and when the stress evolves to the middle of the goaf, it develops in an arc-like stress decreasing circle.Because of the coal seam mining, the separated layer fracture development area is formed on both sides of the goaf, which provides a channel for gas flow, and the protected layer is also relieved.The pressure relief rate reaches 0.91, and the antireflection increase rate is 5% to 20%.The protected layer has obvious effect of pressure relief and antireflection.In order to solve the problem of pressure relief and gas extraction protective layer mining, a gas extraction scheme was designed including cross-layer drilling, bedding drilling, high-level drilling with interception drilling and buried pipe in goaf.
[1] |
谢和平. 深部岩体力学与开采理论研究进展[J]. 煤炭学报, 2019, 44(5): 1283-1305. https://www.cnki.com.cn/Article/CJFDTOTAL-MTXB201905002.htm
XIE Heping. Research review of the state key research development program of China: Deep rock mechanics and mining theory[J]. Journal of China Coal Society, 2019, 44(5): 1283-1305. https://www.cnki.com.cn/Article/CJFDTOTAL-MTXB201905002.htm
|
[2] |
王元杰, 徐刚, 陈法兵, 等. 深部厚硬岩层压裂控制冲击弱化机理及可压裂性评价[J]. 采矿与岩层控制工程学报, 2022, 4(2): 15-23. https://www.cnki.com.cn/Article/CJFDTOTAL-MKKC202202002.htm
WANG Yuanjie, XU Gang, CHEN Fabing, et al. Mining pressure weakening mechanism by ground fracturing and fracturing evaluation of hard rock strata[J]. Journal of Mining and Strata Control Engineering, 2022, 4(2): 15-23. https://www.cnki.com.cn/Article/CJFDTOTAL-MKKC202202002.htm
|
[3] |
康建东. 煤柱对上保护层开采卸压消突效果的影响研究[J]. 矿业安全与环保, 2018, 45(4): 17-21. http://www.kyaqyhb.com/cn/article/id/8579778c-c10b-4a0c-b7a7-3b218ab2183e
KANG Jiandong. Study on the influence of coal pillar on the pressure relief and outburst elimination of the upper protective layer mining[J]. Mining Safety & Environmental Protection, 2018, 45(4): 17-21. http://www.kyaqyhb.com/cn/article/id/8579778c-c10b-4a0c-b7a7-3b218ab2183e
|
[4] |
王晶, 王晓蕾. 下保护层开采时被保护层裂隙发育与渗透特征[J]. 采矿与岩层控制工程学报, 2021, 3(3): 62-70. https://www.cnki.com.cn/Article/CJFDTOTAL-MKKC202103007.htm
WANG Jing, WANG Xiaolei. Seepage characteristic and fracture development of protected seam caused by mining protecting strata[J]. Journal of Mining and Strata Control Engineering, 2021, 3(3): 62-70. https://www.cnki.com.cn/Article/CJFDTOTAL-MKKC202103007.htm
|
[5] |
刘洪永, 程远平, 赵长春, 等. 保护层的分类及判定方法研究[J]. 采矿与安全工程学报, 2010, 27(4): 468-474. https://www.cnki.com.cn/Article/CJFDTOTAL-KSYL201004006.htm
LIU Hongyong, CHENG Yuanping, ZHAO Changchun, et al. Classification and judgment method of the protective layers[J]. Journal of Mining & Safety Engineering, 2010, 27(4): 468-474. https://www.cnki.com.cn/Article/CJFDTOTAL-KSYL201004006.htm
|
[6] |
李学良. 煤矿老采空区覆岩移动变形监测方法分析及应用[J]. 矿业安全与环保, 2022, 49(4): 157-162. doi: 10.19835/j.issn.1008-4495.2022.04.021
LI Xueliang. Analysis and application of monitoring method of overburden movement and deformation in old goaf of coal mine[J]. Mining Safety & Environmental Protection, 2022, 49(4): 157-162. doi: 10.19835/j.issn.1008-4495.2022.04.021
|
[7] |
邓广哲, 刘文静, 李刚, 等. 低渗煤层水力割缝钻孔抽采影响半径[J]. 西安科技大学学报, 2022, 42(4): 619-628. https://www.cnki.com.cn/Article/CJFDTOTAL-XKXB202204001.htm
DENG Guangzhe, LIU Wenjing, LI Gang, et al. Influence radius of hydraulic slotted hole drainage in low permeability coal seam[J]. Journal of Xi'an University of Science and Technology, 2022, 42(4): 619-628. https://www.cnki.com.cn/Article/CJFDTOTAL-XKXB202204001.htm
|
[8] |
刘晓, 李勇, 宣德全, 等. 软煤夹层水射流层状卸压增透抽采瓦斯数值模拟及试验[J]. 煤田地质与勘探, 2021, 49(2): 54-61. https://www.cnki.com.cn/Article/CJFDTOTAL-MDKT202102007.htm
LIU Xiao, LI Yong, XUAN Dequan, et al. Numerical simulation and test of gas drainage with water jet layered pressure relief and permeability enhancement in soft coal seam[J]. Coal Geology & Exploration, 2021, 49(2): 54-61. https://www.cnki.com.cn/Article/CJFDTOTAL-MDKT202102007.htm
|
[9] |
曹偈, 赵旭生, 刘延保. 煤与瓦斯突出多物理场分布特征的数值模拟研究[J]. 矿业安全与环保, 2021, 48(2): 7-11. doi: 10.19835/j.issn.1008-4495.2021.02.002
CAO Ji, ZHAO Xusheng, LIU Yanbao. Numerical simulation on multiphysics field distribution characteristics of coal and gas outburst[J]. Mining Safety & Environmental Protection, 2021, 48(2): 7-11. doi: 10.19835/j.issn.1008-4495.2021.02.002
|
[10] |
钱鸣高, 石平五. 矿山压力与岩层控制[M]. 徐州: 中国矿业大学出版社, 2004.
|
[11] |
李全中, 胡海洋, 吉小峰. 厚煤层煤层气井水力压裂特点及效果评价[J]. 矿业安全与环保, 2023, 50(1): 92-96. doi: 10.19835/j.issn.1008-4495.2023.01.016
LI Quanzhong, HU Haiyang, JI Xiaofeng. Characteristics and effect evaluation of hydraulic fracturing of CBM well with thick coal seam[J]. Mining Safety & Environmental Protection, 2023, 50(1): 92-96. doi: 10.19835/j.issn.1008-4495.2023.01.016
|
[12] |
焦振华, 陶广美, 王浩, 等. 晋城矿区下保护层开采覆岩运移及裂隙演化规律研究[J]. 采矿与安全工程学报, 2017, 34(1): 85-90. https://www.cnki.com.cn/Article/CJFDTOTAL-KSYL201701013.htm
JIAO Zhenhua, TAO Guangmei, WANG Hao, et al. Overburden strata movement and fissure evolution in lower protective layer in Jincheng mining district[J]. Journal of Mining & Safety Engineering, 2017, 34(1): 85-90. https://www.cnki.com.cn/Article/CJFDTOTAL-KSYL201701013.htm
|
[13] |
尹嘉帝, 张华磊, 涂敏. 综采工作面覆岩裂隙动态演化特征研究[J]. 煤炭工程, 2020, 52(6): 116-120. https://www.cnki.com.cn/Article/CJFDTOTAL-MKSJ202006025.htm
YIN Jiadi, ZHANG Hualei, TU Min. Dynamic evolution characteristics of overburden fractures in fully mechanized coal face[J]. Coal Engineering, 2020, 52(6): 116-120. https://www.cnki.com.cn/Article/CJFDTOTAL-MKSJ202006025.htm
|
[14] |
胡炳南, 张华兴, 申宝宏. 建筑物、水体、铁路及主要井巷煤柱留设与压煤开采指南[M]. 北京: 煤炭工业出版社, 2017.
|
[15] |
余学义, 刘樟荣, 赵兵朝, 等. 王家沟煤矿条带充填开采导水裂隙发育规律研究[J]. 煤炭工程, 2015, 47(5): 83-86. https://www.cnki.com.cn/Article/CJFDTOTAL-MKSJ201505029.htm
YU Xueyi, LIU Zhangrong, ZHAO Bingchao, et al. Research on law of water flowing fracture development due to strip-filling mining in Wangjiagou coal mine[J]. Coal Engineering, 2015, 47(5): 83-86. https://www.cnki.com.cn/Article/CJFDTOTAL-MKSJ201505029.htm
|
[16] |
杨科, 谢广祥. 采动裂隙分布及其演化特征的采厚效应[J]. 煤炭学报, 2008, 33(10): 1092-1096. https://www.cnki.com.cn/Article/CJFDTOTAL-MTXB200810003.htm
YANG Ke, XIE Guangxiang. Caving thickness effects on distribution and evolution characteristics of mining induced fracture[J]. Journal of China Coal Society, 2008, 33(10): 1092-1096. https://www.cnki.com.cn/Article/CJFDTOTAL-MTXB200810003.htm
|
[17] |
徐连兵, 杨科, 赵新元. 充填开采覆岩裂隙时空演化实验研究[J]. 煤炭工程, 2022, 54(7): 86-91. https://www.cnki.com.cn/Article/CJFDTOTAL-MKSJ202207016.htm
XU Lianbing, YANG Ke, ZHAO Xinyuan. Experiment on temporal and spatial evolution of overburden fractures in backfill mining[J]. Coal Engineering, 2022, 54(7): 86-91. https://www.cnki.com.cn/Article/CJFDTOTAL-MKSJ202207016.htm
|
[18] |
张勇, 张保, 张春雷, 等. 厚煤层采动裂隙发育演化规律及分布形态研究[J]. 中国矿业大学学报, 2013, 42(6): 935-940. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGKD201306008.htm
ZHANG Yong, ZHANG Bao, ZHANG Chunlei, et al. Study of the dynamic evolution rules and distribution pattern of mining-induced fractures of thick coal seam[J]. Journal of China University of Mining & Technology, 2013, 42(6): 935-940. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGKD201306008.htm
|
[19] |
许家林, 秦伟, 轩大洋, 等. 采动覆岩卸荷膨胀累积效应[J]. 煤炭学报, 2020, 45(1): 35-43. https://www.cnki.com.cn/Article/CJFDTOTAL-MTXB202001005.htm
XU Jialin, QIN Wei, XUAN Dayang, et al. Accumulative effect of overburden strata expansion induced by stress relief[J]. Journal of China Coal Society, 2020, 45(1): 35-43. https://www.cnki.com.cn/Article/CJFDTOTAL-MTXB202001005.htm
|
[20] |
陈军涛, 武强, 尹立明, 等. 高承压水上底板采动岩体裂隙演化规律研究[J]. 煤炭科学技术, 2018, 46(7): 54-60. https://www.cnki.com.cn/Article/CJFDTOTAL-MTKJ201807008.htm
CHEN Juntao, WU Qiang, YIN Liming, et al. Law of crack evolution in floor rock mass above high confined water[J]. Coal Science and Technology, 2018, 46(7): 54-60. https://www.cnki.com.cn/Article/CJFDTOTAL-MTKJ201807008.htm
|
[21] |
保护层开采技术规范: AQ 1050—2008[S].
|
[22] |
程详, 赵光明, 李英明, 等. 软岩保护层开采卸压增透效应及瓦斯抽采技术研究[J]. 采矿与安全工程学报, 2018, 35(5): 1045-1053. https://www.cnki.com.cn/Article/CJFDTOTAL-KSYL201805023.htm
|
[23] |
XIE H P, XIE J, GAO M, et al. Theoretical and experimental validation of mining-enhanced permeability for simultaneous exploitation of coal and gas[J]. Environmental Earth Sciences, 2018, 35(5): 1045-1053.
|
1. |
石钰,赵佳蕊,詹可亮,赵鹏翔,王翠霞,黄圣霖,宋战利. 远距离上被保护煤层应力变化与瓦斯渗流耦合机制研究. 矿业安全与环保. 2025(01): 47-54 .
![]() |