• Chinese Core Periodicals
  • Chinese Core Journals of Science and Technology
  • RCCSE Chinese Core Academic Journals
  • Netherlands Abstracts and Citations Database(Scopus)
  • Directory of Open Access Journals(DOAJ)
  • Chemical abstracts(CA)
  • Abstract Journal(РЖ,AJ)
  • Japan Science and Technology Agency(JST)
Advance Search
ZHOU Xihua, SUN Jiazheng. Prediction of Gas Emission based on Principal Factor Analysis and Improved BP Neural Network[J]. Mining Safety & Environmental Protection, 2018, 45(6): 43-47,52.
Citation: ZHOU Xihua, SUN Jiazheng. Prediction of Gas Emission based on Principal Factor Analysis and Improved BP Neural Network[J]. Mining Safety & Environmental Protection, 2018, 45(6): 43-47,52.

Prediction of Gas Emission based on Principal Factor Analysis and Improved BP Neural Network

More Information
  • Received Date: October 18, 2017
  • Revised Date: November 05, 2018
  • Available Online: September 19, 2022
  • In order to improve the prediction efficiency and accuracy of the gas emission in stope working face,based on reverse BP neural network,principal factor analysis was used to reduce the dimension of variable;combined genetic algorithm (GA) and additional momentum method,the initial weights and thresholds of BP neural network were optimized by genetic algorithm,the GA-BP neural network prediction model based on the principal factor analysis was established,and momentum term was introduced in the process of weight reverse update.The monitoring data of gas emission in Qianjiaying Coal Mine of Kailuan Mining Group was selected as tag data and input data,and the simulation and analysis were carried out for different network models.The results show that the improved GA-BP neural network model converged in 603 time steps,the average relative error is about 0.58%,the prediction accuracy and efficiency are better than other neural network models,and the accurate prediction of gas emission can be realized more effectively.
  • [1]
    石琨.综放工作面瓦斯综合治理技术[J].煤炭科学技术,2012,40(5):63-65.
    [2]
    马建宏,陈懿博,庞泽明.综放工作面瓦斯涌出量预测方法及工程实践[J].中国安全生产科学技术,2014,10(10):143-147.
    [3]
    李泽瑜,孟祥云.矿井瓦斯涌出量预测方法[J].辽宁工程技术大学学报(自然科学版),2014,33(9):1212-1216.
    [4]
    吕伏,梁冰,孙维吉,等.基于主成分回归分析法的回采工作面瓦斯涌出量预测[J].煤炭学报,2012,37(1):113-116.
    [5]
    李国祯,李希建,孟昭君,等.基于灰色理论的矿井未开采区瓦斯涌出量预测[J].煤炭工程,2010,29(9):85-87.
    [6]
    白云霄.基于神经网络算法的煤矿瓦斯涌出量预测模型研究[J].煤炭技术,2012,31(11):104-106.
    [7]
    吉振光.基于遗传算法改进的BP神经网络模型在邻近层瓦斯涌出量预测中的应用[J].煤矿安全,2011,42(7):36-38.
    [8]
    雷文杰,刘瑞涛,苏国韶.灰色关联优化BP神经网络预测工作面瓦斯涌出量[J].矿业安全与环保,2013,40(5):34-37.
    [9]
    卢国斌,康晋恺,白刚,等.PCA—BP在回采工作面瓦斯涌出量预测中的应用[J].辽宁工程技术大学学报(自然科学版),2015,34(12):1329-1334.
    [10]
    谢中华.MATLAB统计分析与应用:40个案例分析[M].北京:北京航天航空大学出版社,2010:374-376.
    [11]
    曹博,白刚,李辉.基于PCA—GA—BP神经网络的瓦斯含量预测分析[J].中国安全生产科学技术,2015,11(5):84-90.
    [12]
    刘奕君,赵强,郝文利.基于遗传算法优化BP神经网络的瓦斯浓度预测研究[J].矿业安全与环保,2015,42(2):56-60.
    [13]
    许宜申,顾济华,陶智,等.基于改进BP神经网络的手写字符识别[J].通信技术,2011,44(5):106-109.
    [14]
    付华,谢森,徐耀松,等.基于ACC—ENN算法的煤矿瓦斯涌出量动态预测模型研究[J].煤炭学报,2014,39(7):1296-1301.
    [15]
    谢仁海.煤矿地质[M].北京:煤炭工业出版社,1987.
  • Related Articles

    [1]TIAN Shuicheng, ZHANG Qian, FENG Shuai. A study of unsafe psychological warning for miners based on BP neural network[J]. Mining Safety & Environmental Protection, 2024, 51(5): 8-14. DOI: 10.19835/j.issn.1008-4495.20230334
    [2]TIAN Shuicheng, REN Zhipeng, MAO Junrui. Recognition model of miner fatigue degree based on genetic algorithm optimized by least squares support vector machine[J]. Mining Safety & Environmental Protection, 2024, 51(4): 110-116. DOI: 10.19835/j.issn.1008-4495.20230312
    [3]KONG Biao, ZHU Sixiang, HU Xiangming, YANG Tao, ZHAO Xushuai, FEI Date, WAN Shuhan. Study on prediction of coal spontaneous combustion based on MSWOA-BP[J]. Mining Safety & Environmental Protection, 2023, 50(5): 30-36. DOI: 10.19835/j.issn.1008-4495.2023.05.005
    [4]SUO Yanchun. Design of downhole CO gas monitoring system based on GA-PSO-BP hybrid optimization algorithm[J]. Mining Safety & Environmental Protection, 2022, 49(6): 28-33. DOI: 10.19835/j.issn.1008-4495.2022.06.005
    [5]LIU Yanqing. Study on the air quantity of mine ventilation network based on BP neural network prediction model of friction resistance coefficient in roadway[J]. Mining Safety & Environmental Protection, 2021, 48(2): 101-106. DOI: 10.19835/j.issn.1008-4495.2021.02.020
    [6]ZHANG Li, LI Jiangsheng, LI Jianlong, CHEN Yixiao. Malfunction diagnoses of dust collector based on neural network[J]. Mining Safety & Environmental Protection, 2020, 47(1): 89-94,99. DOI: 10.19835/j.issn.1008-4495.2020.01.019
    [7]MA Shengxiang, LI Xijian. Prediction of Coal and Gas Outburst based on Factor Analysis and BP Neural Network[J]. Mining Safety & Environmental Protection, 2019, 46(2): 70-74.
    [8]CHEN Jianping, DONG Jun, LYU Xiangwei. Research on Risk Level of Coal and Gas Outburst Prediction Based on PCA-Fisher Discriminant Analysis Model[J]. Mining Safety & Environmental Protection, 2018, 45(3): 61-66,71.
    [9]LIU Xiaoyue, LI Pengyuan. Prediction of Rock Bust Based on Improved FOA-BP Neural Network[J]. Mining Safety & Environmental Protection, 2018, 45(3): 55-60.
    [10]WEI Ning, LIU Jian. Prediction of Mine Frictional Resistance Coefficient Based on BP Neural Network[J]. Mining Safety & Environmental Protection, 2018, 45(1): 57-60.
  • Cited by

    Periodical cited type(16)

    1. 高科,吕航宇,戚志鹏,刘玉姣. 基于PCA-BP神经网络的巷道通风摩擦阻力系数预测模型. 矿业安全与环保. 2024(01): 7-13 . 本站查看
    2. 陈巧军,余浩,李艳昌,谭依佳,李奕. 基于KPCA-LSSVM的回采工作面瓦斯涌出量的预测. 中国安全生产科学技术. 2024(04): 78-84 .
    3. 朱墨然. 基于瓦斯含量反演的工作面瓦斯涌出量动态预测研究. 煤炭工程. 2024(04): 133-137 .
    4. 陈晓军,王启明. 基于有序Logistic回归模型的通风系统评价. 煤矿机械. 2024(10): 192-195 .
    5. 毛智强,徐耀松,王丹丹,田楚汉,黄明宇. 基于模态分解和时间卷积网络的瓦斯涌出量组合预测. 传感技术学报. 2024(10): 1795-1802 .
    6. 赵焕平. 改进思维进化算法优化BP神经网络的瓦斯涌出量预测研究. 南阳理工学院学报. 2023(04): 35-39 .
    7. 张玉财,王毅,郭凯岩. 基于WOA-LSTM的工作面瓦斯涌出量预测研究. 矿业安全与环保. 2023(05): 50-55 . 本站查看
    8. 宝银昙. 基于ZigBee和RBF神经网络的矿井通风质量预测. 微型电脑应用. 2022(02): 31-34 .
    9. 诸葛依娜,齐若涵,李小力,夏鑫. 黏合剂对纳米纤维膜复合织物服用性能的影响. 毛纺科技. 2021(03): 11-15 .
    10. 吴奉亮,霍源,高佳南. 基于随机森林回归的煤矿瓦斯涌出量预测方法. 工矿自动化. 2021(08): 102-107 .
    11. 郭凯维,郭传超,史耀凡,于水. 基于主成分分析的GA-BP神经网络地表下沉系数预测. 北京测绘. 2021(11): 1374-1379 .
    12. 李方超. Design-Expert预测大采高工作面瓦斯涌出量试验. 陕西煤炭. 2020(01): 13-17 .
    13. 肖鹏,谢行俊,双海清,刘朝阳,王海宁,徐经苍. 基于KPCA-CMGANN算法的瓦斯涌出量预测研究. 中国安全科学学报. 2020(05): 39-47 .
    14. 刘琦,孙亮. 基于PCA-BP神经网络的瓦斯涌出量预测分析. 中国煤层气. 2019(04): 3-8 .
    15. 李忠群,徐刚,王云龙,张天军. 基于因子分析的瓦斯涌出量主控因素确定方法. 能源与环保. 2019(10): 1-5 .
    16. 王晓蕾,姬治岗,谢怡婷,杨军科,吴鹏,王馨,郭向前. 采煤工作面瓦斯涌出量预测技术现状及发展趋势. 科学技术与工程. 2019(33): 1-9 .

    Other cited types(12)

Catalog

    Article views (51) PDF downloads (6) Cited by(28)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return