Citation: | LIU Guoyong, YANG Mingrui, WANG Yonggang. Application of High Density Resistivity Method for Water Accumulated Goaf Detection in Coal Mine[J]. Mining Safety & Environmental Protection, 2019, 46(5): 90-94. |
[1] |
杨梅忠, 陈克良.中国煤矿灾害现状与减灾对策分析[J].灾害学, 1997, 12(3):66-70.
|
[2] |
武强, 崔芳鹏, 赵苏启, 等.矿井水害类型划分及主要特征分析[J].煤炭学报, 2013, 38(4):561-565.
|
[3] |
李文, 牟义, 张俊英, 等.煤矿采空区地面探测技术与方法优化[J].煤炭科学技术, 2011, 39(1):102-106.
|
[4] |
张淑婷.地球物理勘查技术在探测煤矿采空区中的应用[J].物探与化探, 2012, 36(增刊1):83-87.
|
[5] |
付天光.综合物探方法探测矿山采空区及积水区技术研究[J].煤炭科学技术, 2014, 42(8):90-94.
|
[6] |
黄晓容.矿井高密度电法在充水岩溶裂隙探测中的应用[J].矿业安全与环保, 2014, 41(5):56-58.
|
[7] |
祁民, 张宝林, 梁光河, 等.高分辨率预测地下复杂采空区的空间分布特征——高密度电法在山西阳泉某复杂采空区中的初步应用研究[J]. 地球物理学进展, 2006, 21(1):256-262.
|
[8] |
雷旭友, 李正文, 折京平.超高密度电阻率法在土洞、煤窑采空区和岩溶勘探中应用研究[J]. 地球物理学进展, 2009, 24(1):340-347.
|
[9] |
杨镜明, 魏周政, 高晓伟.高密度电阻率法和瞬变电磁法在煤田采空区勘查及注浆检测中的应用[J]. 地球物理学进展, 2014, 29(1):362-369.
|
[10] |
张振勇.三维高密度电法在积水采空区探测中的应用[J].矿业安全与环保, 2015, 42(1):76-79.
|
[11] |
薛国强, 潘冬明, 于景邨.煤矿采空区地球物理探测应用综述[J].地球物理学进展, 2018(5):2187-2192.
|
[12] |
刘国兴.电法勘探原理与方法[M].北京:地质出版社, 2005.
|
[13] |
AMINI A, RAMAZI H.Application of electrical resistivity imaging for engineering site investigation:A case study on prospective hospital site, Varamin, Iran[J].Acta Geophysics, 2016, 64(4):2200-2213.
|
[14] |
DAS P, MOHANTY P R.Resistivity imaging technique to delineate shallow subsurface cavities associated with old coal working:a numerical study[J].Environmental Earth Sciences, 2016, 75:661-672.
|
[15] |
LOKE M H, BARKER R D.Rapid least-squares inversion of apparent resistivity pseudo-sections using quasi-Newton method[J].Geophysical Prospecting, 1996a, 44:131-152.
|
[16] |
LOKE M H, BARKER R D.Practical techniques for 3D resistivity surveys and data inversion[J].Geophysical Prospecting, 1996b, 44:499-523.
|
[1] | YANG Jing, CAI Feng, FENG Juqiang, ZHU Meijing, ZHOU Xiabing, YIN Jingwen. Research on analysis and prediction of coal mine safety accidents[J]. Mining Safety & Environmental Protection, 2023, 50(5): 144-148, 155. DOI: 10.19835/j.issn.1008-4495.2023.05.023 |
[2] | CHEN Tiehua, LIU Jingpin, LI Hongxia, WANG Hongliang. Study of influential factors and paths of the mine manager's safety awareness[J]. Mining Safety & Environmental Protection, 2022, 49(1): 109-113, 120. DOI: 10.19835/j.issn.1008-4495.2022.01.019 |
[3] | HUANG Qian. Study on threshold effect of safety investment on economic benefit of coal mine enterprise[J]. Mining Safety & Environmental Protection, 2021, 48(3): 120-125. DOI: 10.19835/j.issn.1008-4495.2021.03.023 |
[4] | YUAN Yongbang, YI Hongchun, XIAN Penghui. Response characteristics of transient electromagnetic in advance detection of goaf water[J]. Mining Safety & Environmental Protection, 2020, 47(4): 103-106,111. DOI: 10.19835/j.issn.1008-4495.2020.04.020 |
[5] | YIN Tao, XIE Xionggang. Study on safety evaluation of internal-caused fire in mine—based on entropy method and catastrophe theory[J]. Mining Safety & Environmental Protection, 2020, 47(2): 120-124. DOI: 10.19835/j.issn.1008-4495.2020.02.024 |
[6] | LI Xijian, HUA Youjin, CHEN Liuyu. Evaluation model and engineering application of variable weight theory on coal mine safety state[J]. Mining Safety & Environmental Protection, 2020, 47(1): 110-114. DOI: 10.19835/j.issn.1008-4495.2020.01.023 |
[7] | ZHAO Zhiguo. Study on Safety State Evaluation of Coal Mine based on Catastrophe Theory[J]. Mining Safety & Environmental Protection, 2019, 46(4): 113-117,122. |
[8] | LI Zhen, CAO Qinggui, YANG Tao. Research on Safety Investment Model of Coal Mine Enterprises based on Support Vector Machine and Continuous Ant Colony Algorithm[J]. Mining Safety & Environmental Protection, 2019, 46(1): 109-113. |
[9] | CHEN Caihua. Research on Wireless Sensor Network Optimization in the Platform of Coal Mine Safety Monitoring[J]. Mining Safety & Environmental Protection, 2018, 45(5): 51-54. |
[10] | ZHOU Mingxuan, ZHANG Yu, HU Sherong. Evaluation of Coal Mine Safety Management Based on Fuzzy Mathematics[J]. Mining Safety & Environmental Protection, 2017, 44(6): 116-119,124. |