• Chinese Core Periodicals
  • Chinese Core Journals of Science and Technology
  • RCCSE Chinese Core Academic Journals
  • Netherlands Abstracts and Citations Database(Scopus)
  • Directory of Open Access Journals(DOAJ)
  • Chemical abstracts(CA)
  • Abstract Journal(РЖ,AJ)
  • Japan Science and Technology Agency(JST)
Advance Search
LIU Guoyong, YANG Mingrui, WANG Yonggang. Application of High Density Resistivity Method for Water Accumulated Goaf Detection in Coal Mine[J]. Mining Safety & Environmental Protection, 2019, 46(5): 90-94.
Citation: LIU Guoyong, YANG Mingrui, WANG Yonggang. Application of High Density Resistivity Method for Water Accumulated Goaf Detection in Coal Mine[J]. Mining Safety & Environmental Protection, 2019, 46(5): 90-94.

Application of High Density Resistivity Method for Water Accumulated Goaf Detection in Coal Mine

More Information
  • Received Date: October 25, 2018
  • Revised Date: September 17, 2019
  • Available Online: September 13, 2022
  • In order to find out the situation of water accumulation in goaf of coal mine and provide basis for the prevention and control of mine water disaster, high density electrical method was used to detect abnormal geology in coal mine. According to the characteristics of high density resistivity method sensitive to water containing water, the forward and reverse calculation of goaf model was carried out by numerical simulation, and geoelectric response characteristics of different goaf were summarized and analyzed, which provided theoretical basis for detecting and analyzing the characteristics of water-accumulated goaf; the abandoned goaf was detected and 9 low resistance abnormal areas were delineated. Combined with the known geology, hydrology, mining data and numerical simulation results, it was speculated that the low resistivity anomalies area 3 and area 4 as well as their corresponding low resistivity anomalies area 7 and area 9 were caused by water accumulated in goaf, and the rest were caused by water-bearing structure. The predicted result is consistent with the actual situation by drilling verification, which further indicates that the high density resistivity method is effective in the detection of water-accumulated goaf.
  • [1]
    杨梅忠, 陈克良.中国煤矿灾害现状与减灾对策分析[J].灾害学, 1997, 12(3):66-70.
    [2]
    武强, 崔芳鹏, 赵苏启, 等.矿井水害类型划分及主要特征分析[J].煤炭学报, 2013, 38(4):561-565.
    [3]
    李文, 牟义, 张俊英, 等.煤矿采空区地面探测技术与方法优化[J].煤炭科学技术, 2011, 39(1):102-106.
    [4]
    张淑婷.地球物理勘查技术在探测煤矿采空区中的应用[J].物探与化探, 2012, 36(增刊1):83-87.
    [5]
    付天光.综合物探方法探测矿山采空区及积水区技术研究[J].煤炭科学技术, 2014, 42(8):90-94.
    [6]
    黄晓容.矿井高密度电法在充水岩溶裂隙探测中的应用[J].矿业安全与环保, 2014, 41(5):56-58.
    [7]
    祁民, 张宝林, 梁光河, 等.高分辨率预测地下复杂采空区的空间分布特征——高密度电法在山西阳泉某复杂采空区中的初步应用研究[J]. 地球物理学进展, 2006, 21(1):256-262.
    [8]
    雷旭友, 李正文, 折京平.超高密度电阻率法在土洞、煤窑采空区和岩溶勘探中应用研究[J]. 地球物理学进展, 2009, 24(1):340-347.
    [9]
    杨镜明, 魏周政, 高晓伟.高密度电阻率法和瞬变电磁法在煤田采空区勘查及注浆检测中的应用[J]. 地球物理学进展, 2014, 29(1):362-369.
    [10]
    张振勇.三维高密度电法在积水采空区探测中的应用[J].矿业安全与环保, 2015, 42(1):76-79.
    [11]
    薛国强, 潘冬明, 于景邨.煤矿采空区地球物理探测应用综述[J].地球物理学进展, 2018(5):2187-2192.
    [12]
    刘国兴.电法勘探原理与方法[M].北京:地质出版社, 2005.
    [13]
    AMINI A, RAMAZI H.Application of electrical resistivity imaging for engineering site investigation:A case study on prospective hospital site, Varamin, Iran[J].Acta Geophysics, 2016, 64(4):2200-2213.
    [14]
    DAS P, MOHANTY P R.Resistivity imaging technique to delineate shallow subsurface cavities associated with old coal working:a numerical study[J].Environmental Earth Sciences, 2016, 75:661-672.
    [15]
    LOKE M H, BARKER R D.Rapid least-squares inversion of apparent resistivity pseudo-sections using quasi-Newton method[J].Geophysical Prospecting, 1996a, 44:131-152.
    [16]
    LOKE M H, BARKER R D.Practical techniques for 3D resistivity surveys and data inversion[J].Geophysical Prospecting, 1996b, 44:499-523.
  • Related Articles

    [1]YANG Jing, CAI Feng, FENG Juqiang, ZHU Meijing, ZHOU Xiabing, YIN Jingwen. Research on analysis and prediction of coal mine safety accidents[J]. Mining Safety & Environmental Protection, 2023, 50(5): 144-148, 155. DOI: 10.19835/j.issn.1008-4495.2023.05.023
    [2]CHEN Tiehua, LIU Jingpin, LI Hongxia, WANG Hongliang. Study of influential factors and paths of the mine manager's safety awareness[J]. Mining Safety & Environmental Protection, 2022, 49(1): 109-113, 120. DOI: 10.19835/j.issn.1008-4495.2022.01.019
    [3]HUANG Qian. Study on threshold effect of safety investment on economic benefit of coal mine enterprise[J]. Mining Safety & Environmental Protection, 2021, 48(3): 120-125. DOI: 10.19835/j.issn.1008-4495.2021.03.023
    [4]YUAN Yongbang, YI Hongchun, XIAN Penghui. Response characteristics of transient electromagnetic in advance detection of goaf water[J]. Mining Safety & Environmental Protection, 2020, 47(4): 103-106,111. DOI: 10.19835/j.issn.1008-4495.2020.04.020
    [5]YIN Tao, XIE Xionggang. Study on safety evaluation of internal-caused fire in mine—based on entropy method and catastrophe theory[J]. Mining Safety & Environmental Protection, 2020, 47(2): 120-124. DOI: 10.19835/j.issn.1008-4495.2020.02.024
    [6]LI Xijian, HUA Youjin, CHEN Liuyu. Evaluation model and engineering application of variable weight theory on coal mine safety state[J]. Mining Safety & Environmental Protection, 2020, 47(1): 110-114. DOI: 10.19835/j.issn.1008-4495.2020.01.023
    [7]ZHAO Zhiguo. Study on Safety State Evaluation of Coal Mine based on Catastrophe Theory[J]. Mining Safety & Environmental Protection, 2019, 46(4): 113-117,122.
    [8]LI Zhen, CAO Qinggui, YANG Tao. Research on Safety Investment Model of Coal Mine Enterprises based on Support Vector Machine and Continuous Ant Colony Algorithm[J]. Mining Safety & Environmental Protection, 2019, 46(1): 109-113.
    [9]CHEN Caihua. Research on Wireless Sensor Network Optimization in the Platform of Coal Mine Safety Monitoring[J]. Mining Safety & Environmental Protection, 2018, 45(5): 51-54.
    [10]ZHOU Mingxuan, ZHANG Yu, HU Sherong. Evaluation of Coal Mine Safety Management Based on Fuzzy Mathematics[J]. Mining Safety & Environmental Protection, 2017, 44(6): 116-119,124.
  • Cited by

    Periodical cited type(17)

    1. 王永刚,吕明,张俊. 综合物探在水库大坝渗漏隐患检测中的应用. 物探化探计算技术. 2024(01): 118-126 .
    2. 贺会策,孙春岩,唐侥,张宗庆,冶北北,赵浩,王栋琳. 基于微渗漏机制的甲烷氡气异常特征及其在煤矿隐蔽致灾因素勘探中的意义. 物探与化探. 2024(05): 1409-1423 .
    3. 周雷,邱光辉,周放亮,刘站,张海亮,赵青涛,史南南. 高密度电法在建筑地基勘察中的应用和改进建议. 化工矿产地质. 2023(01): 72-78 .
    4. 樊力强,翁爱华. 沈白铁路定测过程中隐伏断裂带的高密度电法探测. 世界地质. 2023(01): 168-175 .
    5. 韩世礼,赵艺,麦立坤,柳位,肖健,伍慧琪,王江珊. 高密度电法在非煤矿山老窑采空区探测中的应用. 南华大学学报(自然科学版). 2023(02): 54-60+67 .
    6. 阚雪冬,杨彩,张亮亮,龚俊岭. 煤层顶板含水构造三维直流电法探测研究. 煤矿安全. 2023(11): 158-163 .
    7. 陈品雄. 可控音频大地电磁测深法在煤矿开采中应用. 内蒙古煤炭经济. 2022(03): 124-126 .
    8. 周逸文,张涛,段隆臣,李建文. 我国矿山采空区综合治理研究综述. 安全与环境工程. 2022(04): 220-230 .
    9. 孟小杰,孙文斌,肖磉. 高密度电法和瞬变电磁法在转龙湾煤矿富水区探测中的应用. 工程地球物理学报. 2022(04): 433-442 .
    10. 王永刚,杨明双,张俊. 物探技术在大坝渗漏通道检测中的应用. 水利技术监督. 2022(12): 49-52 .
    11. 贾煦,孙建伟,刘向东,程贤达,黄虹霖. 微动勘探与高密度电法在小尺度老采空区探测中的应用. 中国地质调查. 2022(06): 42-50 .
    12. 张彩亮,张玉芳,姜惠峰. 中国既有隧道下伏煤矿采空区问题研究现状及进展. 科学技术与工程. 2021(07): 2575-2585 .
    13. 孙进步,朱涛. 将军戈壁一号露天煤矿烧变岩水文地质勘察. 露天采矿技术. 2021(03): 76-79 .
    14. 朱涛,孙进步. 将军戈壁一号煤矿烧变岩界线及地下积水区域分布研究. 露天采矿技术. 2021(03): 11-14 .
    15. 高银贵,孔皖军,陈永春,薛贤明,郑刘根,常成林,姜春露,国伟,雷锋,王刚. 特厚煤层综放开采下工作面底板岩层破坏特征. 能源环境保护. 2021(06): 68-75 .
    16. 马宇晶. 煤矿采空区电子轻工厂房基础抗变形技术措施. 石化技术. 2020(02): 295-296 .
    17. 刘远鹏,邓荣斌,王子茂,张卫中,康钦容,李梦玲. 岩溶区特大断面小净距隧道群综合探测成果分析. 武汉工程大学学报. 2020(05): 546-551 .

    Other cited types(9)

Catalog

    Article views (25) PDF downloads (7) Cited by(26)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return