• Chinese Core Periodicals
  • Chinese Core Journals of Science and Technology
  • RCCSE Chinese Core Academic Journals
  • Netherlands Abstracts and Citations Database(Scopus)
  • Directory of Open Access Journals(DOAJ)
  • Chemical abstracts(CA)
  • Abstract Journal(РЖ,AJ)
  • Japan Science and Technology Agency(JST)
Advance Search
YU Zhenfeng, HAO Chunsheng, YANG Changyong, YAO Jinbao, WANG Wei, JI Changjiang. The Analysis of Geochemical Characteristics and Origins of CBM in 9# Coal Section of Sijiazhuang Mine in Yangquan Mining Area[J]. Mining Safety & Environmental Protection, 2019, 46(3): 96-99.
Citation: YU Zhenfeng, HAO Chunsheng, YANG Changyong, YAO Jinbao, WANG Wei, JI Changjiang. The Analysis of Geochemical Characteristics and Origins of CBM in 9# Coal Section of Sijiazhuang Mine in Yangquan Mining Area[J]. Mining Safety & Environmental Protection, 2019, 46(3): 96-99.

The Analysis of Geochemical Characteristics and Origins of CBM in 9# Coal Section of Sijiazhuang Mine in Yangquan Mining Area

More Information
  • Received Date: April 18, 2018
  • Revised Date: May 26, 2019
  • Available Online: September 13, 2022
  • In order to increase the production of coalbed methane in the Shijiazhuang Mine, the desorption of CBM and geochemical characteristics were analyzed. The analysis results of field desorption and gas component of coal show that in the complete desorption process of coal in the 9# coal section, the volume fraction of methane first increases and then decreases, the volume fraction of nitrogen first decreases and then increases, the volume fraction of heavy hydrocarbon is consistent with the change trend of methane, but not synchronously, but later. The analysis of carbon isotope shows that the coal seam δ13C(CH4) shows an increasing trend as a whole with the deportion, δ13C(CH4) grows as it moves away from coal seam. The formation of CBM in the 9# coal section is mainly thermal, it has undergone diffusion and migration in the later stage, so the biological effects are not obvious.
  • [1]
    郑栓龙, 梁爱堂, 张文清, 等. 寺家庄公司综掘工作面瓦斯涌出量影响因素分析[J]. 煤炭技术, 2009, 28(9):106-107.
    [2]
    栾鹏飞. 寺家庄矿高瓦斯矿井煤巷掘进防突技术实践[J]. 煤炭与化工, 2016, 39(5):141-142.
    [3]
    徐占杰, 刘钦甫, 宋璞, 等. 寺家庄井田陷落柱对煤层气井产出水地球化学特征的影响[J]. 煤田地质与勘探, 2017, 45(2):50-54.
    [4]
    煤层气含量测定加温解吸法:GB/T 28753-2012[S]. 北京:中国标准出版社, 2013:1-14.
    [5]
    刘永福, 桑洪, 孙雄伟, 等. 塔里木盆地东部震旦-寒武白云岩类型及成因[J]. 西南石油大学学报(自然科学版), 2008, 30(5):27-31.
    [6]
    李五忠, 雍洪, 李贵中. 煤层气甲烷碳同位素的特征及分馏效应[J]. 天然气工业, 2010,30(11):14-16.
    [7]
    RICE D D. Composition and origins of coalbed gas, hydrocarbons from coal[J]. AAPG Studies in Geology Series, 1993, 38:159-184.
    [8]
    TEICHMULLER R. Das kohlenstoff-isotopen-verhaltnis in methan von grubengas und flozgas und seine abhangigkeit von den geoloischen verhaltnissen[J]. Geol.Mitt, 1970, 9:181-182.
    [9]
    高波, 陶明信, 张建博, 等. 煤层气甲烷碳同位素的分布特征与控制因素[J]. 煤田地质与勘探, 2002, 30(3):14-17.
    [10]
    秦胜飞, 唐修义, 宋岩, 等. 煤层甲烷碳同位素分布特征及分馏机理[J]. 中国科学(D辑), 2006, 36(12):1092-1097.
    [11]
    SMITH J W, PALLASSER J R. Microbial origin of australian coalbed methane[J]. AAPG Bull, 1996, 80(6):891-897.
    [12]
    崔永君, 张群, 张泓, 等. 不同煤级煤对CH4、N2和CO2单组分气体的吸附[J]. 天然气工业, 2005, 25(1):61-65.
    [13]
    BUSCH A, GENSTERBLUM Y, et al. Methane and CO2 sorption and desorption measurements on dry argonne premium coal:pure components and mixtures[J]. International Journal of Coal Geology, 2003, 55(2-4):205-224.
    [14]
    KOTARBA M J. Composition and origin of coalbed gases in the upper silesian and lublin basins, poland[J]. Organic Geochemistry, 2001, 32(1):163-180.
    [15]
    GOLDING S D, BOREHAM C J, ESTERLE J S. Stable isotope geochemistry of coal bed and shale gas and related production waters:a review[J]. International Journal of Coal Geology, 2013(6):24-40.
  • Related Articles

    [1]YU Weijian, SUN Meilin, DU Jinying, CHEN Guoliang, WANG Chuang. Research progress on approach for ecological restoration of mine, emission reduction and carbon sink growth under the goal of carbon peak and carbon neutrality[J]. Mining Safety & Environmental Protection, 2025, 52(1): 38-46. DOI: 10.19835/j.issn.1008-4495.20240217
    [2]LIU Xinjie, YANG Yingming, ZHAO Yongqiang. The path of coal to electricity revolution under the goals of carbon peak and carbon neutral[J]. Mining Safety & Environmental Protection, 2024, 51(1): 14-18. DOI: 10.19835/j.issn.1008-4495.20230150
    [3]ZHANG Zhigang, HUO Chunxiu. Research progress of CBM utilization technology in mining areas[J]. Mining Safety & Environmental Protection, 2022, 49(4): 59-64. DOI: 10.19835/j.issn.1008-4495.2022.04.007
    [4]LIANG Wenxu, LI Jiangtao, FU Wei, ZHANG Yang. Research and application of mixed gas source identification technology based on stable isotope[J]. Mining Safety & Environmental Protection, 2022, 49(3): 56-61. DOI: 10.19835/j.issn.1008-4495.2022.03.010
    [5]DING Hong, WU Jiaokun, FENG Renjun, WEI Le. Comparison test of the proportion of coal seam group combined extraction gas mixed source[J]. Mining Safety & Environmental Protection, 2021, 48(3): 33-38. DOI: 10.19835/j.issn.1008-4495.2021.03.007
    [6]HU Haiyang, ZHAO Lingyun, CHEN Jie. Development conditions of multiple coal seam resources and damage characteristics of co-mining reservoirs in Songhe Mine Field[J]. Mining Safety & Environmental Protection, 2020, 47(2): 99-103,108. DOI: 10.19835/j.issn.1008-4495.2020.02.020
    [7]CHENG Bo, LUO Huogen, ZHANG Feng. Study on Surface U-shaped Drilling Technology for CBM Extraction in Low-rank Thick Coal Seam[J]. Mining Safety & Environmental Protection, 2019, 46(6): 89-92,97.
    [8]JIANG Wangang. Numerical Simulation Study on Influence of Geostress and Reservoir Pressure on Ground CBM Pre-extraction[J]. Mining Safety & Environmental Protection, 2019, 46(4): 35-39,44.
    [9]SHA Yanyun, KANG Jingwen, HAO Yafei, FENG Xue, BAI Tingting. Comprehensive Evaluation Model for Clean Production of Coalbed Methane andIts Application[J]. Mining Safety & Environmental Protection, 2017, 44(6): 106-110,115.
    [10]WANG Chenjun, DU Jingguo, LIANG Yinghua. Study on Influencing Factors of permeability of Coalbed Methane Reservoir[J]. Mining Safety & Environmental Protection, 2017, 44(6): 83-87,91.
  • Cited by

    Periodical cited type(4)

    1. 翟佳宇,张松航,唐书恒,郭慧秋,刘冰,纪朝琪. 云南老厂雨汪煤层气区块气水成因及产能响应. 现代地质. 2022(05): 1341-1350 .
    2. 郭强,张鹏. 山西省沁水煤田云泉矿区煤中硫赋存规律及地质成因研究. 矿业安全与环保. 2022(06): 13-18 . 本站查看
    3. 王丹,郭广山,余洋,张盖霞,陈明,陈明星. 煤层气解吸过程中甲烷碳同位素特征. 天然气地球科学. 2021(01): 119-124 .
    4. 丁红,吴教锟,冯仁俊,位乐. 煤层群联合抽采瓦斯混源比例的对比试验. 矿业安全与环保. 2021(03): 33-38 . 本站查看

    Other cited types(1)

Catalog

    Article views (20) PDF downloads (3) Cited by(5)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return