• Chinese Core Periodicals
  • Chinese Core Journals of Science and Technology
  • RCCSE Chinese Core Academic Journals
  • Netherlands Abstracts and Citations Database(Scopus)
  • Directory of Open Access Journals(DOAJ)
  • Chemical abstracts(CA)
  • Abstract Journal(РЖ,AJ)
  • Japan Science and Technology Agency(JST)
Advance Search
DONG Shaopu, LIU Jian, LI Yanchang, BAI Xuesong, LIU Qinghai. Experimental Research on Indicator Gas Spontaneous Combustion in Dongrong No.1 Coal Mine based on Principal Component Analysis[J]. Mining Safety & Environmental Protection, 2019, 46(2): 1-5.
Citation: DONG Shaopu, LIU Jian, LI Yanchang, BAI Xuesong, LIU Qinghai. Experimental Research on Indicator Gas Spontaneous Combustion in Dongrong No.1 Coal Mine based on Principal Component Analysis[J]. Mining Safety & Environmental Protection, 2019, 46(2): 1-5.

Experimental Research on Indicator Gas Spontaneous Combustion in Dongrong No.1 Coal Mine based on Principal Component Analysis

More Information
  • Received Date: April 08, 2018
  • Revised Date: March 10, 2019
  • Available Online: September 12, 2022
  • In order to effectively prevent the disaster caused by coal spontaneous combustion in Dongrong No. 1 Coal Mine, the spontaneous combustion characteristics of coal seams in this coal mine were studied through the experiment of coal spontaneous combustion oxidation, the critical temperature of the marked gas in the experimental coal sample was determined and the variation of its volume fraction with temperature was analyzed; the principal component analysis method was used to comprehensively evaluate the nine indexes such as temperature, φ(CO), φ(C2H4)/φ(C2H6), etc., and the dominant index in predicting coal spontaneous combustion was selected. The results showed that the critical temperature of index gas and its regularity can reflect the spontaneous combustion process of coal. According to the principle of index gas optimization and the optimization results of principal component analysis, a prediction and forecast system for coal spontaneous combustion of Dongrong No.1 Coal Mine was established. φ(CO),φ(C2H6),φ(C2H4) and φ(C2H2) were selected as the main indicators and the ratio of φ(C2H4)/φ(C2H6) was selected as the auxiliary indicator. The accuracy of early prediction of coal spontaneous combustion was improved, and the prevention of mine fire was realized.
  • [1]
    王德明.矿井火灾学[M].徐州:中国矿业大学出版社,2008.
    [2]
    邓存宝,王继仁,张俭,等.煤自燃生成乙烯反应机理[J].煤炭学报,2008,33(3):299-303.
    [3]
    周西华,陈猛,白刚,等.基于灰色关联法的褐煤燃烧阶段指标气体分析与优选[J].世界科技研究与发展,2016,38(6):1262-1265.
    [4]
    周西华,白刚,聂荣山,等.褐煤燃烧阶段烃生成规律研究[J].中国安全科学学报,2016,26(1):58-63.
    [5]
    周西华,宋东平,聂荣山,等.褐煤燃烧阶段碳氧化物生成规律研究[J].中国安全科学学报,2016,26(3):59-63.
    [6]
    梁运涛.煤炭自然发火预测预报的气体指标法[J].煤炭科学技术,2008,36(6):5-8.
    [7]
    贾廷贵,王树刚,郝宇,等.煤自燃过程烷烃析出规律及氧化特性实验[J].辽宁工程技术大学学报(自然科学版),2012, 31(6):830-833.
    [8]
    贾宝山,王汉元,金珂,等.主成分分析法在煤自燃标志性气体优选中应用[J].应用泛函分析学报,2017,19(4):452-456.
    [9]
    邓军,周少柳,马砺,等.基于PCA-PSOSVM的煤自燃程度预测研究[J].矿业安全与环保,2016,43(5):27-31.
    [10]
    郑忠,宋万利.基于主成分分析的中煤发热量的检测研究[J].煤炭技术,2014,33(6):218-220.
    [11]
    陈胜可.SPSS统计分析从入门到精通[M].北京:清华大学出版社,2010.
    [12]
    高惠璇.应用多元统计分析[M].北京:北京大学出版社,2005.
    [13]
    中华人民共和国煤炭工业部.煤层煤样采取方法:GB 482-1995[S].北京:中国标准出版社,1995:1-5.
    [14]
    中华人民共和国国家质量监督检验检疫总局,中国国家标准化管理委员会.煤样的制备方法:GB 474-2008[S].北京:中国标准出版社,2008:10-14.
    [15]
    黎锦贤,胡千庭.主成分分析法在煤矿安全评价中的应用[J].矿业安全与环保,2007(5):71-73.
    [16]
    李峰,刘小阳,于雪涛,等.基于AHP-PCA模型的煤炭城市生态环境质量评价[J].矿业安全与环保,2017,44(5):103-106.
  • Related Articles

    [1]KONG Biao, ZHU Sixiang, HU Xiangming, YANG Tao, ZHAO Xushuai, FEI Date, WAN Shuhan. Study on prediction of coal spontaneous combustion based on MSWOA-BP[J]. Mining Safety & Environmental Protection, 2023, 50(5): 30-36. DOI: 10.19835/j.issn.1008-4495.2023.05.005
    [2]WEN Hu, GUO Ximan, ZHANG Duo, CHENG Xiaojiao, WEI Gaoming, TANG Rui. Optimization of early prediction index for spontaneous combustion of gassy coal seam in Jianbei Coal Mine[J]. Mining Safety & Environmental Protection, 2022, 49(3): 1-8. DOI: 10.19835/j.issn.1008-4495.2022.03.001
    [3]YAO Jingming, XU Ziwen, WANG Jian, LIU Junyu. Prediction of rock burst electromagnetic radiation based on multifractal theory[J]. Mining Safety & Environmental Protection, 2021, 48(5): 59-63. DOI: 10.19835/j.issn.1008-4495.2021.05.012
    [4]ZHANG Yuzhu. Study on critical value of K1 of outburst risk prediction index of working face[J]. Mining Safety & Environmental Protection, 2020, 47(6): 94-97. DOI: 10.19835/j.issn.1008-4495.2020.06.018
    [5]LIU Chen, XIE Jun, XIN Lin. Review of Theory and Technology Research on Prediction of Coal Spontaneous Combustion[J]. Mining Safety & Environmental Protection, 2019, 46(3): 92-95,99.
    [6]QU Shijia, LI Peng. Research on Prediction Technology of Roof Mining Pressure based on Big Data of Support Resistance[J]. Mining Safety & Environmental Protection, 2019, 46(2): 92-97.
    [7]WEN Tingxin, YU Feng'e. Research on Prediction of Coal Spontaneous Combustion Based on KPCA-Fisher Discriminant Analysis[J]. Mining Safety & Environmental Protection, 2018, 45(2): 49-53,58.
    [8]WEI Ning, LIU Jian. Prediction of Mine Frictional Resistance Coefficient Based on BP Neural Network[J]. Mining Safety & Environmental Protection, 2018, 45(1): 57-60.
    [9]CHEN Yutao, QIN Jun, LI Jiangong, ZHANG Mingming. Application of AE Technique in Coal and Gas Outburst Prediction[J]. Mining Safety & Environmental Protection, 2017, 44(6): 11-16.
    [10]ZHAO Zihao, LIU Jinxiao, WNAG Laihe, ZONG Caijian. Prediction and Actual Measurement of Water Flowing Fractured Zone Height in Overburden Strata of Flat Seam[J]. Mining Safety & Environmental Protection, 2017, 44(2): 66-69.
  • Cited by

    Periodical cited type(14)

    1. 崔明皓,王月红,王凯. 基于灰色关联法的指标气体优选与自燃临界值研究. 华北理工大学学报(自然科学版). 2024(03): 62-69 .
    2. 杨博,王昊宇,司俊鸿,程根银. 基于程序升温的沙曲一矿煤自燃特性实验研究. 华北科技学院学报. 2024(04): 49-55 .
    3. 田水承,任治鹏,毛俊睿. 基于遗传算法优化最小二乘支持向量机的矿工疲劳程度识别模型. 矿业安全与环保. 2024(04): 110-116 . 本站查看
    4. 马俊田. 石圪台煤矿3-1煤自然发火标志气体实验研究. 山东煤炭科技. 2023(05): 100-103 .
    5. 赵亚明,杨伟,陈洋. 冲击地压矿井易自燃厚煤层回撤工作面自燃防治技术. 煤矿安全. 2022(04): 81-86+93 .
    6. 张志旭,杨胜强,蔡佳文,周步壮. 基于加权马氏距离-灰靶决策模型的煤自燃程度判定方法. 中国科技论文. 2022(05): 508-515 .
    7. 吕英华,周春山,安世岗. 典型易燃厚煤层综采工作面CO来源主控因素实验研究. 山西煤炭. 2022(03): 74-79 .
    8. 康延雷,赵亚明,师吉林. 煤矿用CO吸收剂的优选与应用. 中国煤炭. 2022(11): 41-45 .
    9. 王杨,胡泊,董天文. 基于神经网络的密闭采空区煤自燃预警. 沈阳航空航天大学学报. 2022(05): 77-83 .
    10. 黄有为. 某矿10号煤层标志气体研究. 内蒙古煤炭经济. 2021(05): 31-32 .
    11. 骆大勇,刘振. 许疃煤矿煤炭自燃指标气体优选与应用. 矿业安全与环保. 2021(05): 69-74 . 本站查看
    12. 彦鹏,黄光利,张仰强,胡全宏. 双马煤矿4-1煤层自然发火标志气体及临界值研究. 矿业安全与环保. 2020(02): 85-89+98 . 本站查看
    13. 王月红,周宁,张九零,朱壮. 不同煤种自燃指标气体优化研究. 河南理工大学学报(自然科学版). 2020(06): 10-15 .
    14. 卢国菊,赵永芳,赵国飞. 对煤自燃发火预测预报指标体系的研究. 内蒙古煤炭经济. 2020(15): 126-127 .

    Other cited types(14)

Catalog

    Article views (28) PDF downloads (8) Cited by(28)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return