• Chinese Core Periodicals
  • Chinese Core Journals of Science and Technology
  • RCCSE Chinese Core Academic Journals
  • Netherlands Abstracts and Citations Database(Scopus)
  • Directory of Open Access Journals(DOAJ)
  • Chemical abstracts(CA)
  • Abstract Journal(РЖ,AJ)
  • Japan Science and Technology Agency(JST)
Advance Search
ZHOU Xihua, ZHOU Xiaomin, GUO Xiaoyang. The Key Parameters Optimization of High Level Gas Drainage Roadway in Extra Thick and High-gas Coal Seams[J]. Mining Safety & Environmental Protection, 2018, 45(6): 73-78.
Citation: ZHOU Xihua, ZHOU Xiaomin, GUO Xiaoyang. The Key Parameters Optimization of High Level Gas Drainage Roadway in Extra Thick and High-gas Coal Seams[J]. Mining Safety & Environmental Protection, 2018, 45(6): 73-78.

The Key Parameters Optimization of High Level Gas Drainage Roadway in Extra Thick and High-gas Coal Seams

More Information
  • Received Date: September 22, 2017
  • Revised Date: December 04, 2017
  • Available Online: September 19, 2022
  • The gas emission of 4301 fully mechanized working face in Xiagou Coal Mine in extra thick and high-gas seam is large,and gas drainage technology in high level gas drainage roadway is affected by many factors when solving this problem,there are two most critical parameters,namely the horizontal distance between the high level gas drainage roadway and the return air roadway,the vertical distance between the roof of the coal seam.In order to seek the optimal values of the key parameters,based on the law of overburden rock mass failure properties in mining,using the method of FLUENT numerical calculation to simulate the influence of the vertical distance and the horizontal distance on the drainage effects,obtaining the optimized parameters after comprehensive analysis of simulation results and field data.The results show that when the horizontal distance is 20 m and the vertical distance is 30 m,the effect of gas drainage in high level gas drainage roadway is the best;after the high level gas drainage roadway in 4301 fully mechanized working face arranged by the optimal value,the average gas extraction in high level gas drainage roadway is 43.93 m3/min,its maximum can reach 54.75 m3/min,accounts for about 75.6% of the total gas emission,the amount of air exhaust from the original 14.03 m3/min drops to 3.91 m3/min,these data prove that the gas extraction effect is significant.
  • [1]
    周世宁,林柏泉.煤层瓦斯赋存与流动理论[M].北京:煤炭工业出版社,1999.
    [2]
    丁广骧.三维釆空区瓦斯、氮气的扩散运动及有限元解法[J].煤炭学报,1996,21(4):411-414.
    [3]
    袁亮.卸压开采抽采瓦斯理论及煤与瓦斯共采技术体系[J].煤炭学报,2009,34(1):1-8.
    [4]
    谢和平,周宏伟,薛东杰,等.我国煤与瓦斯共采:理论、技术与工程[J].煤炭学报,2014,39(8):1391-1397.
    [5]
    冯建华,李德春,张洪志.羊渠河矿井采用“高抽巷”抽采瓦斯的探讨[J].辽宁工程技术大学学报(自然科学版),1999,18(1):15-18.
    [6]
    钱鸣高,许家林.覆岩采动的“O”形圈特征研究[J].煤炭学报,1998,23(5):465-469.
    [7]
    周西华,王鹏辉,门金龙,等.高瓦斯特厚煤层下分层千米钻孔瓦斯抽采技术[J].煤田地质与勘探,2016,44(4):20-24.
    [8]
    李宗翔,刘耀宇,孙洪峰,等.采空区水平钻孔瓦斯抽放工艺与原理[J].中国地质灾害与防治学报,2008,19(1):95-99.
    [9]
    肖峻峰,樊世星,卢平,等.近距离高瓦斯煤层群倾向高抽巷抽采卸压瓦斯布置优化[J].采矿与安全工程学报,2016,33(3):564-570.
    [10]
    赵国飞,郭辉,刘唐圣.高抽巷合理位置的数值模拟及应用效果分析[J].矿业安全与环保,2016,43(6):71-73.
    [11]
    林海飞,李树刚,索亮,等.走向高抽巷合理层位的FLUENT数值模拟[J].辽宁工程技术大学学报(自然科学版),2014,33(2):172-176.
    [12]
    王成.顶板瓦斯高抽巷合理抽放负压数值模拟研究[J].工业安全与环保,2011,37(1):59-61.
    [13]
    郑艳飞,杨胜强,李付涛,等.走向高抽巷抽采在阳泉三矿的应用[J].煤炭技术,2010,29(9):101- 103.
    [14]
    钱鸣高,石平五,许家林.矿山压力与岩层控制[M].徐州:中国矿业大学出版社,2010.
    [15]
    李树刚.综放开采围岩活动及瓦斯运移[M].徐州:中国矿业大学出版社,2000.
    [16]
    张军,王建鹏.采动覆岩“三带”高度相似模拟及实证研究[J].采矿与安全工程学报,2014,31(2):249-254.
  • Related Articles

    [1]QI Qingxin, WANG Shouguang, WANG Meimei, CUI Chunyang, LIU Huaguang, WANG Jiamin, MU Pengyu, ZHU Xiaojing, LI Haitao, XU Xuewei. Research on numerical-physical simulation methods and applications for coal mine rock burst[J]. Mining Safety & Environmental Protection, 2025, 52(1): 1-13. DOI: 10.19835/j.issn.1008-4495.20250005
    [2]WANG Jun, ZHAO Dong. Numerical simulation of gas emission during borehole drilling[J]. Mining Safety & Environmental Protection, 2023, 50(6): 77-84. DOI: 10.19835/j.issn.1008-4495.2023.06.013
    [3]CHEN Yuexia, CHU Tingxiang, CHEN Peng. Numerical simulation analysis of effective gas drainage area in different number of drillings[J]. Mining Safety & Environmental Protection, 2021, 48(5): 23-27,32. DOI: 10.19835/j.issn.1008-4495.2021.05.005
    [4]WANG Guanghong. Numerical simulation study of gas drainage based on directional long drilling[J]. Mining Safety & Environmental Protection, 2021, 48(4): 38-42. DOI: 10.19835/j.issn.1008-4495.2021.04.009
    [5]WANG Hongmei, JIN Zhupeng, ZHAO Shanyou, LI Junzhi, ZHAI Guangshun, HOU Fengjun. Study on the influence of the extraction rate of highly-located drainage roadway on compound disaster prevention in goaf[J]. Mining Safety & Environmental Protection, 2021, 48(2): 44-48,54. DOI: 10.19835/j.issn.1008-4495.2021.02.009
    [6]CAO Jie, ZHAO Xusheng, LIU Yanbao. Numerical simulation on multiphysics field distribution characteristics of coal and gas outburst[J]. Mining Safety & Environmental Protection, 2021, 48(2): 7-11. DOI: 10.19835/j.issn.1008-4495.2021.02.002
    [7]YAN Qinyang, LIU Xingkui, CHANG Xuhua. Numerical simulation of spontaneous combustion characteristics of open-pit coal piles[J]. Mining Safety & Environmental Protection, 2020, 47(5): 29-33. DOI: 10.19835/j.issn.1008-4495.2020.05.006
    [8]SU Chao, LU Jian, GUO Meng. Determination of Reasonable Size of Segment Coal Pillar in High Gassy Fully Mechanized Working Face[J]. Mining Safety & Environmental Protection, 2018, 45(4): 89-92,97.
    [9]ZHAO Xin. Numerical Simulation Analysis of Influencing Factors of Gas Drainage in Beizhuang Coal Mine[J]. Mining Safety & Environmental Protection, 2018, 45(1): 34-38,42.
    [10]WANG Zheng, LI Zongxiang. Numerical Simulation Study on Influence of Gas Drainage by High-levelBoreholes on Spontaneous Combustion of Residual Coal[J]. Mining Safety & Environmental Protection, 2017, 44(4): 1-5.
  • Cited by

    Periodical cited type(11)

    1. 陈占全,杨伟,魏强. W型通风工作面中隅角瓦斯治理技术研究. 煤炭技术. 2021(02): 117-119 .
    2. 朱红青,郭晋麟,白志鹏,暴庆丰. 基于采空区悬管引流装置的工作面上隅角瓦斯治理研究. 矿业安全与环保. 2021(01): 80-84+90 . 本站查看
    3. 高玉龙. 长壁工作面沿空留巷充填墙体宽度模拟研究. 矿业安全与环保. 2021(02): 55-60+65 . 本站查看
    4. 赵林,者倩,邹治,李佳妮,魏世龙,孟丽萍. 新集一矿综放工作面瓦斯高抽巷技术. 陕西煤炭. 2021(04): 5-9 .
    5. 魏长胜. 镇城底矿22212工作面高抽巷瓦斯抽采技术研究. 煤炭与化工. 2021(10): 107-109 .
    6. 李明. 矿井采空区瓦斯抽采技术的研究及应用. 当代化工研究. 2020(03): 72-73 .
    7. 李蕾,廉常军,邓照玉. 高抽巷层位精确定位及瓦斯治理技术. 科学技术创新. 2020(10): 170-172 .
    8. 张京兆,王建国,闫涛,武睿萌. 高抽巷层位及负压的变化对采空区自燃氧化带影响的数值模拟. 矿业研究与开发. 2020(10): 108-112 .
    9. 宋爽,张天军,李树刚,马莉,潘少波. 采空区卸压瓦斯抽采评判系统设计与实现. 矿业安全与环保. 2019(05): 85-89 . 本站查看
    10. 王勇,马金魁. 顶板定向长钻孔“以孔代巷”抽采瓦斯技术研究. 矿业安全与环保. 2019(05): 95-98+103 . 本站查看
    11. 孙亮,孙珍平. 特厚煤层综放面的顶抽巷大直径导通钻孔技术研究. 中国煤炭. 2019(11): 68-72 .

    Other cited types(5)

Catalog

    Article views (32) PDF downloads (6) Cited by(16)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return