• Chinese Core Periodicals
  • Chinese Core Journals of Science and Technology
  • RCCSE Chinese Core Academic Journals
  • Netherlands Abstracts and Citations Database(Scopus)
  • Directory of Open Access Journals(DOAJ)
  • Chemical abstracts(CA)
  • Abstract Journal(РЖ,AJ)
  • Japan Science and Technology Agency(JST)
Advance Search
LI Zhen, CAO Qinggui, YANG Tao. Research on Safety Investment Model of Coal Mine Enterprises based on Support Vector Machine and Continuous Ant Colony Algorithm[J]. Mining Safety & Environmental Protection, 2019, 46(1): 109-113.
Citation: LI Zhen, CAO Qinggui, YANG Tao. Research on Safety Investment Model of Coal Mine Enterprises based on Support Vector Machine and Continuous Ant Colony Algorithm[J]. Mining Safety & Environmental Protection, 2019, 46(1): 109-113.

Research on Safety Investment Model of Coal Mine Enterprises based on Support Vector Machine and Continuous Ant Colony Algorithm

More Information
  • Received Date: September 09, 2018
  • Revised Date: December 24, 2018
  • Available Online: September 12, 2022
  • In order to solve the problems that the safety investment was insufficient and unreasonable in domestic coal mine enterprises, a safety investment model based on integrated support vector machine (SVM) and continuous ant colony algorithm (CACA) was proposed. The investment of coal mine safety was divided into five items, namely industrial health investment, safety technology investment, safety management investment, safety education investment and labor protection supplies investment, the nonlinear mapping between safety investment and safety guarantee degree was established by SVM, CACA iteration was used to find the optimal security input scheme under the premise of ensuring a certain degree of security. The results show that the scheme can optimize the allocation of security investment funds, avoid waste and inadequate investment and other problems. It proves the feasibility of the application of the safety investment model that integrated SVM and CACA, which can be further studied to guide coal mine enterprises to make scientific and reasonable safety investment.
  • [1]
    李静. 煤矿企业安全生产成本控制问题研究[J]. 煤炭技术, 2015,34(6):330-332.
    [2]
    高蕊. 煤矿安全投入优化数学模型研究及应用[J]. 中国煤矿, 2012(3):105-108.
    [3]
    杨力,于海云. 基于BP模型的煤矿安全管理投入经济分析[J]. 矿业安全与环保, 2013,40(2):109-112.
    [4]
    张飞燕,孟薇,韩颖.基于灰色系统理论的煤矿安全投入结构分析与优化[J].中国矿业,2014(1):120-124.
    [5]
    任海芝. 煤炭企业安全投入规模与投入结构优化研究[J]. 中国安全科学学报, 2014,24(8):3-8.
    [6]
    MARCO Dorigo, VITTORIO Maniezzo. A ant system:optimization by a colony of cooperating agents[J]. IEEE Transaction on System, Man and Cybernetics,1996,26(1):29-41.
    [7]
    苏杨. 基于蚁群算法的环境经济负荷分配问题研究[D]. 广州:华南理工大学, 2011.
    [8]
    CORINNA Cortes, VAPNIK Vladimir N.Support-vector networks[J].Machine Learning,1995, 20(3):273-297.
    [9]
    李东, 周可法, 孙卫东,等. BP神经网络和SVM在矿山环境评价中的应用分析[J]. 干旱区地理, 2015(1):128-133.
    [10]
    胡帅, 贺益君, 俞欢军,等. 蚁群法研究进展及应用于化学化工[J]. 计算机与应用化学,2008(1):1-6.
    [11]
    邢行. 基于上位效应的多目标测试用例优先排序蚁群算法优化研究[D]. 北京:北京化工大学, 2016.
    [12]
    杨娜, 付强, 李荣东,等. 连续蚁群算法在水稻灌溉制度优化中的应用[J]. 农业工程学报, 2010(10):134-138.
    [13]
    周袅, 葛洪伟, 袁运浩,等. 基于人工蜂群的连续域蚁群优化算法[J]. 计算机工程与科学, 2016(6):1156-1163.
    [14]
    赵鹏飞, 贺阿红. 煤矿安全投入结构合理性评价[J]. 煤矿安全, 2016,47(1):227-230.
    [15]
    曹庆贵, 张广宇, 张建.基于神经网络和证据理论的煤矿风险预警模型[J].矿业安全与环保,2012,39(1):81-83.
  • Related Articles

    [1]TIAN Shuicheng, REN Zhipeng, MAO Junrui. Recognition model of miner fatigue degree based on genetic algorithm optimized by least squares support vector machine[J]. Mining Safety & Environmental Protection, 2024, 51(4): 110-116. DOI: 10.19835/j.issn.1008-4495.20230312
    [2]KE Lihua, MENG Huanhuan, HU Nanyan, WANG Qihu, CHEN Kuixiang. Mine safety input decision model based on dynamic grey area weighted correlation algorithm and its application[J]. Mining Safety & Environmental Protection, 2023, 50(1): 123-128, 134. DOI: 10.19835/j.issn.1008-4495.2023.01.022
    [3]HUANG Xiaohong, DONG Shiqi, LI Jing, LU Ye. Research on granite crack identification by acoustic emission based on GMM+SVM[J]. Mining Safety & Environmental Protection, 2022, 49(2): 21-28, 34. DOI: 10.19835/j.issn.1008-4495.2022.02.004
    [4]LYU Pengfei, QIU Lin, MIAO Zhuang, CUI Xuekai. Study on risk analysis and prevention of rock burst in working face under the influence of continous sharp corner coal pillar[J]. Mining Safety & Environmental Protection, 2021, 48(5): 75-80. DOI: 10.19835/j.issn.1008-4495.2021.05.015
    [5]ZHANG Jialing, DONG Ziwen. Simulation Study on Continuous Nitrogen Injection in Goaf based on COMSOL Dynamic Model[J]. Mining Safety & Environmental Protection, 2019, 46(2): 15-19,24.
    [6]LIANG Shuanghua, WANG Yunjia, WEI Lianjiang. Study on Integrated Optimization Model of CO Sensor[J]. Mining Safety & Environmental Protection, 2019, 46(1): 69-73.
    [7]PANG Jinlun. Discussion on Uniformity Detection of Dynamic Continuous Gas Mixture System[J]. Mining Safety & Environmental Protection, 2018, 45(3): 112-115.
    [8]YANG Chen, WU Jianxing. Feature Extraction and Classification of Mine Microseismic Signal Based on WPD-SVD[J]. Mining Safety & Environmental Protection, 2018, 45(3): 37-41.
    [9]ZHANG Liangliang, SHI Yongkui, LI Junyong. Study on Water-Richness of Roof Sandstone Based on Hybrid Kernel Function Support Vector Machine[J]. Mining Safety & Environmental Protection, 2018, 45(2): 72-76.
    [10]LI Shangguo. Design and Application of Horizontal Continuous Pulping Machine for Coal Mine Fire Prevention and Extinguishing[J]. Mining Safety & Environmental Protection, 2017, 44(5): 53-55.
  • Cited by

    Periodical cited type(11)

    1. 姜福川,王昊,杨浩,明银龙,盛兵旺. 基于AHP-DEMATEL-ISM的煤矿安全投入结构研究. 矿业安全与环保. 2024(04): 90-95 . 本站查看
    2. 谢友财. 高危行业企业安全投入与员工安全行为策略演化博弈分析. 项目管理技术. 2023(02): 106-111 .
    3. 柯丽华,孟欢欢,胡南燕,王其虎,陈魁香. 基于动态灰积加权关联算法的矿山安全投入决策模型及应用. 矿业安全与环保. 2023(01): 123-128+134 . 本站查看
    4. 王卫强,庄云铎,闫帆,马志维,余健宇. 建筑安全投入的GWO-SVR模型构建与实证分析. 大连交通大学学报. 2023(03): 92-96 .
    5. 王娜娜. SVM和攻防树在信息安全态势评估中的应用. 信息技术. 2023(09): 33-37+46 .
    6. 刘朕中. 煤炭企业安全费用资金投入对其经济效益的影响建模. 内蒙古煤炭经济. 2022(07): 46-50 .
    7. 许梦国,闫曳綪,王平,刘红阳,张威威. 基于AHP-C的矿山企业安全投入评价研究. 武汉科技大学学报. 2021(04): 312-320 .
    8. 富浩,张涛,李玉梅,刘永辉. 基于井下参数的PCA-SVM卡钻预测研究. 计算机仿真. 2021(12): 386-390 .
    9. 李腾飞,李常友,李敬兆. 煤矿信息全面感知与智慧决策系统. 工矿自动化. 2020(03): 34-37+54 .
    10. 马捍超,沈杰鑫,徐路强,于海. 面向海量样本的线性可分支持向量机分组算法. 微型电脑应用. 2020(11): 82-85 .
    11. 程晓强,崔峰,陈建强,杨贵儒,常博. 基于系统动力学的煤矿投入管理仿真分析. 矿业安全与环保. 2019(06): 124-130 . 本站查看

    Other cited types(5)

Catalog

    Article views (55) PDF downloads (9) Cited by(16)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return