• Chinese Core Periodicals
  • Chinese Core Journals of Science and Technology
  • RCCSE Chinese Core Academic Journals
  • Netherlands Abstracts and Citations Database(Scopus)
  • Directory of Open Access Journals(DOAJ)
  • Chemical abstracts(CA)
  • Abstract Journal(РЖ,AJ)
  • Japan Science and Technology Agency(JST)
Advance Search
LI Shugang, ZHANG Xiaoyu, YAN Min, BAI Yang. Effect of Coal Particle Size on Pore Structure Characteristic and Gas Adsorption Characteristic[J]. Mining Safety & Environmental Protection, 2019, 46(4): 8-12,16.
Citation: LI Shugang, ZHANG Xiaoyu, YAN Min, BAI Yang. Effect of Coal Particle Size on Pore Structure Characteristic and Gas Adsorption Characteristic[J]. Mining Safety & Environmental Protection, 2019, 46(4): 8-12,16.

Effect of Coal Particle Size on Pore Structure Characteristic and Gas Adsorption Characteristic

More Information
  • Received Date: September 04, 2018
  • Revised Date: July 01, 2019
  • Available Online: September 13, 2022
  • In order to study the pore structure characteristics and gas adsorption characteristics of coal briquettes as well as their correlations under different particle sizes, the middle rank coal samples of Xinjiang Mine were selected to prepare coal briquette samples of four sizes. The samples were tested by NMR and high pressure gas isothermal adsorption capacity, to determine the T2 spectrum and gas adsorption isotherm of different particle sizes. The results show that the T2 spectrum signals of different particle sizes show two peaks of micropores and mesopores, the relaxation time is mainly concentrated from 1.0 ms to 100.0 ms; the peak area of medium and large pores is negatively correlated with the particle size, the peak area of micropores is positively correlated with the particle size; under the same adsorption conditions, the smaller the average particle size of briquette is, the larger the total amount of adsorbed gas is, and the gas adsorption constants a and b and the gas adsorption saturation X are negatively correlated with the particle size; as the peak area of micropores increases, the adsorption rate of gas increases, and the gas adsorption capacity increases within a certain range, then tends to be gentle after reaching a certain value.
  • [1]
    王振.突出煤体的瓦斯解吸特征及其影响因素分析[J].矿业安全与环保, 2017, 44(1):102-105.
    [2]
    孙东玲, 曹偈, 熊云威, 等.突出过程中煤—瓦斯两相流运移规律的实验研究[J].矿业安全与环保, 2017, 44(2):26-30.
    [3]
    聂百胜, 杨涛, 李祥春, 等.煤粒瓦斯解吸扩散规律实验[J]. 中国矿业大学学报, 2013, 42(6):975-981.
    [4]
    李树刚, 安朝峰, 林海飞, 等.多因素影响下煤层吸附甲烷特性试验研究[J].煤炭科学技术, 2014, 42(6):40-44.
    [5]
    张天军, 许鸿杰, 李树刚, 等.粒径大小对煤吸附甲烷的影响[J].湖南科技大学学报(自然科学版), 2009, 24(1):9-12.
    [6]
    REZAEE R, ZOU J.Effect of particle size on high-pressure methane adsorption of coal[J]. Petroleum Research, 2016(1):53-58.
    [7]
    梁冰, 贾立锋, 孙维吉, 等.粒状煤和块状煤等温吸附CH4试验研究[J].中国安全生产科学技术, 2017, 13(3):53-57.
    [8]
    冯艳艳, 杨文, 储伟.Coalbed methane adsorption and desorption characteristics related to coal particle size[J].Chinese Physics B, 2016, 25(6):542-551.
    [9]
    李一波, 郑万成, 王凤双.煤样粒径对煤吸附常数及瓦斯放散初速度的影响[J].煤矿安全, 2013, 44(1):5-8.
    [10]
    大冢一雄, 邹忠有.煤层瓦斯渗透性的研究——粉煤成型煤样的渗透率[J].煤矿安全, 1982(11):44-51.
    [11]
    许江, 陆漆, 吴鑫, 等.不同颗粒粒径下型煤孔隙及发育程度分形特征[J].重庆大学学报, 2011, 34(9):81-89.
    [12]
    SING K S W. Characterization of porous materials: past, present and future[J].Colloids & Surfaces A Physicochemical & Engineering Aspects, 2004, 241(1):3-7.
    [13]
    姚艳斌, 刘大锰, 黄文辉, 等.两淮煤田煤储层孔—裂隙系统与煤层气产出性能研究[J].煤炭学报, 2006, 31(2): 163-168.
    [14]
    林海飞, 蔚文斌, 李树刚, 等.低阶煤孔隙结构对瓦斯吸附特性影响的试验研究[J].煤炭科学技术, 2016, 44(6):127-133.
    [15]
    姚艳斌, 刘大锰.煤储层精细定量表征与综合评价模型[M]. 北京:地质出版社, 2013.
    [16]
    TIMUR A. Pulsed nuclear magnetic resonance studies of porosity, movable fluid, and permeability of sandstones[J]. Journal of Petroleum Technology, 1969, 21(6):775-786.
    [17]
    KENYON W E. Nuclear magnetic resonance as petrophysical measurement[J]. International Journal of Radiation Applications & Instrumentation.part E.nuclear Geophysics, 1992, 6(2):153-171.
    [18]
    龚国波, 孙伯勤, 刘买利, 等.岩心孔隙介质中流体的核磁共振弛豫[J].波谱学杂志, 2006, 23(3):379-395.
    [19]
    姚艳斌, 刘大锰, 蔡益栋, 等.基于NMR和X-CT的煤的孔裂隙精细定量表征[J].中国科学:地球科学, 2010, 41(11):1598-1607.
    [20]
    白松涛, 程道解, 万金彬, 等.砂岩岩石核磁共振T2谱定量表征[J].石油学报, 2016, 37(3):382-391.
    [21]
    MAZUMDER S, HEMERT P V, BUSCH A, et al. Flue gas and pure CO2 sorption properties of coal: A comparative study[J]. International Journal of Coal Geology, 2006, 67(4):267-279.
  • Related Articles

    [1]LI Kang, HAN Fei, ZHANG Wenxuan, WEI Xiangyang, WANG Yijun, LI Wenfu, HAN Zongxiang, WANG Gang. Theoretical model and numerical solution of CO adsorption diffusion flow in coal particles[J]. Mining Safety & Environmental Protection, 2025, 52(2): 66-75, 81. DOI: 10.19835/j.issn.1008-4495.20230929
    [2]ZHOU Jinhui, GUO Xiaoyang, ZHAO Bo, JIN Zhixin, DENG Cunbao, LIU Jiyong, WANG Meng. Study on the influence of microscopic components and pore structure of coal-rock system on methane adsorption[J]. Mining Safety & Environmental Protection, 2024, 51(1): 51-60, 69. DOI: 10.19835/j.issn.1008-4495.20220668
    [3]ZENG Ping, ZHANG Dongming, YAN Xianhua, SONG Lin, WANG Xiaolei. Study on gas adsorption and diffusion characteristics of intact coal and tectonic coal[J]. Mining Safety & Environmental Protection, 2023, 50(4): 36-41. DOI: 10.19835/j.issn.1008-4495.2023.04.007
    [4]LI Shugang, QIN Xueyan, BAI Yang, LONG Hang, YUE Min, YAN Min. Experimental study on influence factors of coal gas adsorption by orthogonal design[J]. Mining Safety & Environmental Protection, 2022, 49(4): 72-79. DOI: 10.19835/j.issn.1008-4495.2022.04.009
    [5]XIONG Jianlong, WANG Kai, DU Quanxian, MENG Xiangchang, GUO Bingbing. Study on pore characteristics of acidified coal samples based on low field nuclear magnetic resonance technology[J]. Mining Safety & Environmental Protection, 2022, 49(1): 47-52. DOI: 10.19835/j.issn.1008-4495.2022.01.008
    [6]MA Yongyuan. Gas Adsorption Characteristics of Coal Affected by Surface Acid Modification[J]. Mining Safety & Environmental Protection, 2018, 45(6): 25-28.
    [7]WU Aijing, ZHANG Yongbo, ZHENG Qiang, YANG Junyao, ZHANG Zhixiang. Experimental Study of Adsorption Efficiency to SO42- in Abandoned Mine Water by Sandy Soil[J]. Mining Safety & Environmental Protection, 2018, 45(6): 6-9,14.
    [8]XIAO Lu. Exergy Analysis of Air Separation with Pressure Swing Adsorption[J]. Mining Safety & Environmental Protection, 2018, 45(5): 99-104.
    [9]CHAI Lin, WU Shiyue, NIU Yu, WEI Jie. Prediction of Supercritical Methane Adsorption in Deep Coal Seam[J]. Mining Safety & Environmental Protection, 2018, 45(4): 27-31.
    [10]LI Xiaojiang, WEI Wenbin, JIA Yongyong, BAI Yang, LOU Fang. Experimental Study on Effect of Thermodynamic Characteristics of Gas Adsorption of Coal Samples with Different Particle Sizes[J]. Mining Safety & Environmental Protection, 2017, 44(6): 25-30.
  • Cited by

    Periodical cited type(12)

    1. 廖鹏,段中川. 褐煤粒径对电厂烟气吸附特性的影响研究. 兰州石化职业技术大学学报. 2025(01): 11-16 .
    2. 林海飞,季鹏飞,孔祥国,李树刚,陈晨,杨送瑞. 三轴应力下原煤吸附CH_4/N_2变形时空特性. 中国矿业大学学报. 2023(02): 314-328 .
    3. 杨三萍,刘鹏珍,卢卫永. 不同黏结剂掺量条件下型煤试样三轴压缩试验研究. 采矿与岩层控制工程学报. 2023(02): 46-54 .
    4. 成小雨,程成,陈龙,赵刚. “截割-放落”煤体瓦斯解吸粒度效应及动态预测模型. 煤炭技术. 2023(04): 103-107 .
    5. 严敏,魏嘉宁,李树刚,林海飞,张坤尹,岳敏,范奕汝. 多因素影响表面活性剂喷淋煤体抑制瓦斯解吸实验研究. 煤矿安全. 2023(05): 140-152 .
    6. 张辰,马晓敏,樊玉萍,董宪姝,陈茹霞. 基于正交设计的煤泥压滤过程影响因素研究. 洁净煤技术. 2023(S2): 654-660 .
    7. 马兴莹,龚选平,成小雨,程成,李德波. 不同粒径混合煤样瓦斯解吸动力特性研究. 工矿自动化. 2023(08): 142-147 .
    8. 成小雨,龚选平,尉瑞,高涵,赵刚. 考虑煤体粒度的落煤瓦斯涌出预测模型研究. 中国安全生产科学技术. 2022(07): 61-67 .
    9. 秦钰佳,唐鑫,程龙飞,周廷强,向磊,郭森. 基于分形理论的页岩纳米孔隙粒度效应探究. 断块油气田. 2022(04): 520-526 .
    10. 李树刚,秦雪燕,白杨,龙航,岳敏,严敏. 煤吸附瓦斯影响因素的正交设计实验研究. 矿业安全与环保. 2022(04): 72-79 . 本站查看
    11. 孙元田,李桂臣,常庆粮,李菁华,杨森. 基于智能反演的等效型煤构建方法、原理与技术. 采矿与安全工程学报. 2022(06): 1210-1217 .
    12. 宋亚伟,杨胜强,杨锴. 长期浸水风干煤瓦斯吸附解吸规律研究. 矿业安全与环保. 2020(05): 1-6 . 本站查看

    Other cited types(23)

Catalog

    Article views (32) PDF downloads (6) Cited by(35)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return