Citation: | DENG Tianyang. Advancement on CO oxidation of underground mines catalyzed by nanomaterials at low temperature[J]. Mining Safety & Environmental Protection, 2025, 52(1): 95-104. DOI: 10.19835/j.issn.1008-4495.20241178 |
Low-temperature catalytic CO oxidation using nanomaterials has achieved significant progress in recent years as an essential air pollution control technology. Addressing the technical challenges of rapid CO removal in coal mines, this study reviews the current research on noble and non-noble metal catalysts, revealing the effects of surface defects and metal-support synergy on reaction pathways. The study highlights the active mechanisms of different catalyst systems in low-temperature CO oxidation, discusses the regulatory role of supports on catalyst performance, and evaluates the promoting effects of additives. By comparing the performance of noble and non-noble metal catalysts, this study summarizes their advantages and limitations and proposes new directions for future catalyst design. It provides a theoretical reference for the development of low-temperature CO oxidation catalyst.
[1] |
WANG K, LIU B D, LI J, et al. In-situ synthesis of TiO2 nanostructures on Ti foil for enhanced and stable photocatalytic performance[J]. Journal of Materials Science & Technology, 2019, 35(4): 615-622.
|
[2] |
WANG L N, LI X N, HE S G. Recent research progress in the study of catalytic CO oxidation by gas phase atomic clusters[J]. Science China Materials, 2020, 63(6): 892-902.
|
[3] |
SHEN J, ZHU Y, HU Y, et al. Atomically dispersed gold-supported catalysts: preparation and potential for low-temperature CO oxidation[J]. Materials Today Nano, 2018, 4: 54-69.
|
[4] |
YADAVA R N, BHATT V. Carbon monoxide: Risk assessment, environmental, and health hazard[M]//Hazardous gases. Amsterdam: Elsevier, 2021: 83-96.
|
[5] |
夏远翔, 陈曦, 范超男, 等. 受限空间无轨胶轮车尾气(CO、SO2)排放扩散规律试验研究[J]. 矿业安全与环保, 2023, 50(3): 32-36. doi: 10.19835/j.issn.1008-4495.2023.03.006
XIA Yuanxiang, CHEN Xi, FAN Chaonan, et al. Test research on diffusion law of tail gas (CO, SO2) discharged from trackless rubber- tyred vehicle in confined space[J]. Mining Safety & Environmental Protection, 2023, 50(3): 32-36. doi: 10.19835/j.issn.1008-4495.2023.03.006
|
[6] |
LI J, GUO Z Z, CHEN X Y, et al. Rapid and efficient removal of CO in CH4 and CH4/coal dust hybrid explosions: a novel approach of spraying catalyst powder[J]. Fuel, 2021, 290: 119790.
|
[7] |
ZHANG R S, WANG J C, ZHU X H, et al. Phase-separated Ce-Co-O catalysts for CO oxidation[J]. International Journal of Hydrogen Energy, 2020, 45(23): 12777-12786.
|
[8] |
LIN J, WANG X D, ZHANG T. Recent progress in CO oxidation over Pt-group-metal catalysts at low temperatures[J]. Chinese Journal of Catalysis, 2016, 37(11): 1805-1813.
|
[9] |
XIE X W, LI Y, LIU Z Q, et al. Low-temperature oxidation of CO catalysed by Co3O4 nanorods[J]. Nature, 2009, 458: 746-749. doi: 10.1038/nature07877
|
[10] |
YOON C, COCKE D L. The design and preparation of planar models of oxidation catalysts I. Hopcalite[J]. Journal of Catalysis, 1988, 113(2): 267-280. doi: 10.1016/0021-9517(88)90256-4
|
[11] |
LI J, SHEN Z Y, WANG T, et al. A novel approach for active and synchronous removal of fire-generated CO based on Co-La0. 1 catalyst: From lab-scale to full-scale tests[J]. Fuel, 2023, 350: 128830. doi: 10.1016/j.fuel.2023.128830
|
[12] |
LI J, LEI Y Y, GUO Z Z, et al. Temperature-dependent reaction pathways of CO oxidation and the application as monolithic catalysts for Co3O4 nanorods[J]. Applied Catalysis A: General, 2019, 587: 117191. doi: 10.1016/j.apcata.2019.117191
|
[13] |
LI J, HE S, LI L, et al. Effect of Co3O4 powder on the explosion characteristics and CO products of methane-air mixture[J]. Fuel, 2024, 358: 130239. doi: 10.1016/j.fuel.2023.130239
|
[14] |
LI J, HE S, WANG T, et al. A catalyst powder-based spraying approach for rapid and efficient removal of fire-generated CO: From laboratory to pilot scale[J]. Journal of Hazardous Materials, 2021, 415: 125607.
|
[15] |
ROYER S, DUPREZ D. Catalytic oxidation of carbon monoxide over transition metal oxides[J]. ChemCatChem, 2011, 3(1): 24-65.
|
[16] |
IMBIHL R, ERTL G. Oscillatory kinetics in heterogeneous catalysis[J]. Chemical Reviews, 1995, 95(3): 697-733.
|
[17] |
HENDRIKSEN B L M, BOBARU S C, FRENKEN J W M. Bistability and oscillations in CO oxidation studied with scanning tunnelling microscopy inside a reactor[J]. Catalysis Today, 2005, 105(2): 234-243.
|
[18] |
HENDRIKSEN B L M, ACKERMANN M D, VAN RIJN R, et al. The role of steps in surface catalysis and reaction oscillations[J]. Nature Chemistry, 2010, 2(9): 730-734.
|
[19] |
GUO Z, LIU B, ZHANG Q H, et al. Recent advances in heterogeneous selective oxidation catalysis for sustainable chemistry[J]. Chemical Society Reviews, 2014, 43(10): 3480-3524.
|
[20] |
LYKAKI M, PACHATOURIDOU E, CARABINEIRO S A C, et al. Ceria nanoparticles shape effects on the structural defects and surface chemistry: Implications in CO oxidation by Cu/CeO2 catalysts[J]. Applied Catalysis B: Environmental, 2018, 230: 18-28.
|
[21] |
YAN D W, LI Q R, ZHANG H, et al. A highly dispersed mesoporous zeolite@TiO2-supported Pt for enhanced sulfur-resistance catalytic CO oxidation[J]. Catalysis Communications, 2020, 142: 106042.
|
[22] |
QIAO B T, LIU L Q, ZHANG J, et al. Preparation of highly effective ferric hydroxide supported noble metal catalysts for CO oxidations: From gold to palladium[J]. Journal of Catalysis, 2009, 261(2): 241-244.
|
[23] |
CHOI Y I, LEE S, KIM S K, et al. Fabrication of ZnO, ZnS, Ag-ZnS, and Au-ZnS microspheres for photocatalytic activities, CO oxidation and 2-hydroxyterephthalic acid synthesis[J]. Journal of Alloys and Compounds, 2016, 675: 46-56.
|
[24] |
GUAN H L, LIN J, LI L, et al. Highly active subnano Rh/Fe(OH)x catalyst for preferential oxidation of CO in H2-rich stream[J]. Applied Catalysis B: Environmental, 2016, 184: 299-308.
|
[25] |
QIAO B T, WANG A Q, YANG X F, et al. Single-atom catalysis of CO oxidation using Pt1/FeOx[J]. Nature Chemistry, 2011, 3(8): 634-641.
|
[26] |
MARQUES P, RIBEIRO N F P, SCHMAL M, et al. Selective CO oxidation in the presence of H2 over Pt and Pt-Sn catalysts supported on niobia[J]. Journal of Power Sources, 2006, 158(1): 504-508.
|
[27] |
MOZER T S, PASSOS F B. Selective CO oxidation on Cu promoted Pt/Al2O3 and Pt/Nb2O5 catalysts[J]. International Journal of Hydrogen Energy, 2011, 36(21): 13369-13378.
|
[28] |
MORFIN F, NGUYEN T S, ROUSSET J L, et al. Synergy between hydrogen and ceria in Pt-catalyzed CO oxidation: an investigation on Pt-CeO2 catalysts synthesized by solution combustion[J]. Applied Catalysis B: Environmental, 2016, 197: 2-13.
|
[29] |
NGUYEN T S, MORFIN F, AOUINE M, et al. Trends in the CO oxidation and PROX performances of the platinum-group metals supported on ceria[J]. Catalysis Today, 2015, 253: 106-114. http://www.nstl.gov.cn/paper_detail.html?id=eefac0b173eb93111bcb3e006c3b2be9
|
[30] |
LIU H L, MA L, SHAO S B, et al. Preferential CO oxidation on Ce-promoted Pt/γ-Al2O3 catalysts under H2-rich atmosphere[J]. Chinese Journal of Catalysis, 2007, 28(12): 1077-1082.
|
[31] |
QIAO B T, LIANG J X, WANG A Q, et al. Ultrastable single-atom gold catalysts with strong covalent metal-support interaction (CMSI)[J]. Nano Research, 2015, 8(9): 2913-2924.
|
[32] |
THERRIEN A J, HENSLEY A J R, MARCINKOWSKI M D, et al. An atomic-scale view of single-site Pt catalysis for low-temperature CO oxidation[J]. Nature Catalysis, 2018, 1: 192-198.
|
[33] |
HARUTA M, KOBAYASHI T, SANO H, et al. Novel gold catalysts for the oxidation of carbon monoxide at a temperature far below 0 ℃[J]. Chemistry Letters, 1987, 16(2): 405-408.
|
[34] |
HARUTA M. Spiers Memorial Lecture. Role of perimeter interfaces in catalysis by gold nanoparticles[J]. Faraday Discussions, 2011, 152: 11-32.
|
[35] |
LOU Y, XU J, ZHANG Y, et al. Metal-support interaction for heterogeneous catalysis: from nanoparticles to single atoms[J]. Materials Today Nano, 2020, 12: 100093.
|
[36] |
SCHILLING C, ZIEMBA M, HESS C, et al. Identification of single-atom active sites in CO oxidation over oxide-supported Au catalysts[J]. Journal of Catalysis, 2020, 383: 264-272.
|
[37] |
QIAO B T, LIN J, WANG A Q, et al. Highly active Au1/Co3O4 single-atom catalyst for CO oxidation at room temperature[J]. Chinese Journal of Catalysis, 2015, 36(9): 1505-1511.
|
[38] |
LOU Y, CAI Y F, HU W D, et al. Identification of active area as active center for CO oxidation over single Au atom catalyst[J]. ACS Catalysis, 2020, 10(11): 6094-6101.
|
[39] |
QIAO B T, LIU J X, WANG Y G, et al. Highly efficient catalysis of preferential oxidation of CO in H2-rich stream by gold single-atom catalysts[J]. ACS Catalysis, 2015, 5(11): 6249-6254.
|
[40] |
CARGNELLO M, DOAN-NGUYEN V V T, GORDON T R, et al. Control of metal nanocrystal size reveals metal-support interface role for ceria catalysts[J]. Science, 2013, 341(6147): 771-773.
|
[41] |
SPEZZATI G, BENAVIDEZ A D, DELARIVA A T, et al. CO oxidation by Pd supported on CeO2(100) and CeO2(111) facets[J]. Applied Catalysis B: Environmental, 2019, 243: 36-46.
|
[42] |
SPEZZATI G, SU Y Q, HOFMANN J P, et al. Atomically dispersed Pd-O species on CeO2(111) as highly active sites for low-temperature CO oxidation[J]. ACS Catalysis, 2017, 7(10): 6887-6891.
|
[43] |
OKUMURA M, MASUYAMA N, KONISHI E, et al. CO oxidation below room temperature over Ir/TiO2 catalyst prepared by deposition precipitation method[J]. Journal of Catalysis, 2002, 208(2): 485-489.
|
[44] |
CHAN K S, MA J, JAENICKE S, et al. Catalytic carbon monoxide oxidation over strontium, cerium and copper-substituted lanthanum manganates and cobaltates[J]. Applied Catalysis A: General, 1994, 107(2): 201-227.
|
[45] |
HE J K, CHEN S Y, TANG W X, et al. Microwave-assisted integration of transition metal oxide nanocoatings on manganese oxide nanoarray monoliths for low temperature CO oxidation[J]. Applied Catalysis B: Environmental, 2019, 255: 117766.
|
[46] |
HOSSAIN S T, AZEEVA E, ZHANG K F, et al. A comparative study of CO oxidation over Cu-O-Ce solid solutions and CuO/CeO2 nanorods catalysts[J]. Applied Surface Science, 2018, 455: 132-143.
|
[47] |
ELIAS J S, ARTRITH N, BUGNET M, et al. Elucidating the nature of the active phase in copper/ceria catalysts for CO oxidation[J]. ACS Catalysis, 2016, 6(3): 1675-1679.
|
[48] |
ELIAS J S, RISCH M, GIORDANO L, et al. Structure, bonding, and catalytic activity of monodisperse, transition-metal-substituted CeO2 nanoparticles[J]. Journal of the American Chemical Society, 2014, 136(49): 17193-17200.
|
[49] |
ZHENG X C, WU S H, WANG S P, et al. The preparation and catalytic behavior of copper-cerium oxide catalysts for low-temperature carbon monoxide oxidation[J]. Applied Catalysis A: General, 2005, 283(1/2): 217-223.
|
[50] |
XIE Y, WU J F, JING G J, et al. Structural origin of high catalytic activity for preferential CO oxidation over CuO/CeO2 nanocatalysts with different shapes[J]. Applied Catalysis B: Environmental, 2018, 239: 665-676.
|
[51] |
CÁMARA A L, KUBACKA A, SCHAY Z, et al. Influence of calcination temperature and atmosphere preparation parameters on CO-PROX activity of catalysts based on CeO2/CuO inverse configurations[J]. Journal of Power Sources, 2011, 196(9): 4364-4369.
|
[52] |
AVGOUROPOULOS G, IOANNIDES T, MATRALIS H. Influence of the preparation method on the performance of CuO-CeO2 catalysts for the selective oxidation of CO[J]. Applied Catalysis B: Environmental, 2005, 56(1/2): 87-93.
|
[53] |
IABLOKOV V, BARBOSA R, POLLEFEYT G, et al. Catalytic CO oxidation over well-defined cobalt oxide nanoparticles: size-reactivity correlation[J]. ACS Catalysis, 2015, 5(10): 5714-5718.
|
[54] |
SUN Y, LV P, YANG J Y, et al. Ultrathin Co3O4 nanowires with high catalytic oxidation of CO[J]. Chemical Communications, 2011, 47(40): 11279-11281.
|
[55] |
HAN Y F, CHEN F X, ZHONG Z Y, et al. Controlled synthesis, characterization, and catalytic properties of Mn2O3 and Mn3O4 nanoparticles supported on mesoporous silica SBA-15[J]. The Journal of Physical Chemistry B, 2006, 110(48): 24450-24456.
|
[56] |
LIU Q H, WANG S, HAN F, et al. Biomimetic tremelliform ultrathin MnO2/CuO nanosheets on kaolinite driving superior catalytic oxidation: an example of CO[J]. ACS Applied Materials & Interfaces, 2022, 14(39): 44345-44357.
|
[57] |
TIAN F X, ZHU M H, LIU X L, et al. Dynamic structure of highly disordered manganese oxide catalysts for low-temperature CO oxidation[J]. Journal of Catalysis, 2021, 401: 115-128.
|
[58] |
EINAGA H, URAHAMA N, TOU A, et al. CO oxidation over TiO2-supported Pt-Fe catalysts prepared by coimpregnation methods[J]. Catalysis Letters, 2014, 144(10): 1653-1660.
|
[59] |
DAI G L, LIU J H, QIAN H. CO catalytic oxidation over graphene with double vacancy-embedded molybdenum: a DFT investigation[J]. Carbon Letters, 2019, 29(4): 337-344.
|
[60] |
FU Q, LI W X, YAO Y X, et al. Interface-confined ferrous centers for catalytic oxidation[J]. Science, 2010, 328(5982): 1141-1144.
|
[61] |
TOMITA A, SHIMIZU K I, KATO K, et al. Pt/Fe-containing alumina catalysts prepared and treated with water under moderate conditions exhibit low-temperature CO oxidation activity[J]. Catalysis Communications, 2012, 17: 194-199.
|
[62] |
LIU X S, KOROTKIKH O, FARRAUTO R. Selective catalytic oxidation of CO in H2: structural study of Fe oxide-promoted Pt/ alumina catalyst[J]. Applied Catalysis A: General, 2002, 226(1/2): 293-303.
|
[63] |
HARUTA M, TSUBOTA S, KOBAYASHI T, et al. Low-temperature oxidation of CO over gold supported on TiO2, α-Fe2O3, and Co3O4[J]. Journal of Catalysis, 1993, 144(1): 175-192.
|
[64] |
DATÉ M, OKUMURA M, TSUBOTA S, et al. Vital role of moisture in the catalytic activity of supported gold nanoparticles[J]. Angewandte Chemie (International Ed), 2004, 43(16): 2129-2132.
|
[65] |
XU H, FU Q, GUO X G, et al. Architecture of Pt-Co bimetallic catalysts for catalytic CO oxidation[J]. ChemCatChem, 2012, 4(10): 1645-1652.
|
[66] |
KO E Y, PARK E, LEE H, et al. Supported Pt-Co catalysts for selective CO oxidation in a hydrogen-rich stream[J]. Angewandte Chemie International Edition, 2007, 46(5): 734-737.
|
[67] |
POTEMKIN D I, FILATOV E Y, ZADESENETS A V, et al. Preferential CO oxidation over bimetallic Pt-Co catalysts preparedvia double complex salt decomposition[J]. Chemical Engineering Journal, 2012, 207: 683-689.
|
[68] |
WANG C X, ZHANG L H, LIU Y T. Aluminumphosphate molecular sieves supported Pt-Co catalysts for the preferential oxidation of CO in H2-rich gases[J]. Applied Catalysis B: Environmental, 2013, 136: 48-55.
|
[69] |
LÓPEZ A, NAVASCUES N, MALLADA R, et al. Pt-CoOx nanoparticles supported on ETS-10 for preferential oxidation of CO reaction[J]. Applied Catalysis A: General, 2016, 528: 86-92.
|
[70] |
YANG L F, SHAN S Y, LOUKRAKPAM R, et al. Role of support-nanoalloy interactions in the atomic-scale structural and chemical ordering for tuning catalytic sites[J]. Journal of the American Chemical Society, 2012, 134(36): 15048-15060.
|
[71] |
ORAN U, UNER D. Mechanisms of CO oxidation reaction and effect of chlorine ions on the CO oxidation reaction over Pt/CeO2 and Pt/CeO2/γ-Al2O3 catalysts[J]. Applied Catalysis B: Environmental, 2004, 54(3): 183-191.
|
[72] |
TAIRA K, NAKAO K J, SUZUKI K, et al. SOx tolerant Pt/TiO2 catalysts for CO oxidation and the effect of TiO2 supports on catalytic activity[J]. Environmental Science & Technology, 2016, 50(17): 9773-9780.
|
[73] |
TAIRA K, EINAGA H. The effect of SO2 and H2O on the interaction between Pt and TiO2(P-25) during catalytic CO oxidation[J]. Catalysis Letters, 2019, 149(4): 965-973.
|
[74] |
LIU Q H, WANG S, HAN F, et al. Multiple interface coupling in ultrathin Mn-based composites for superior catalytic oxidation: Implications of interface coupling on structural defects[J]. Journal of Colloid and Interface Science, 2023, 642: 380-392.
|
[75] |
YAN Z, YANG H, OUYANG J, et al. In situ loading of highly-dispersed CuO nanoparticles on hydroxyl-group-rich SiO2-AlOOH composite nanosheets for CO catalytic oxidation[J]. Chemical Engineering Journal, 2017, 316: 1035-1046.
|
[76] |
LI X, NI C, LU X, et al. In situ fabrication of Ce1-xLaxO2-δ/palygorskite nanocomposites for efficient catalytic oxidation of CO: effect of La doping[J]. Catalysis Science & Technology, 2016, 6(2): 545-554.
|