• Chinese Core Periodicals
  • Chinese Core Journals of Science and Technology
  • RCCSE Chinese Core Academic Journals
  • Netherlands Abstracts and Citations Database(Scopus)
  • Directory of Open Access Journals(DOAJ)
  • Chemical abstracts(CA)
  • Abstract Journal(РЖ,AJ)
  • Japan Science and Technology Agency(JST)
Advance Search
HUANG Dongmei, LU Huanhuan, PAN Xin, QIAO Shuyu, WANG Xinzhao. Analysis of mechanical behavior and acoustic emission characteristic of red sandstone with holes and cracks under uniaxial compression[J]. Mining Safety & Environmental Protection, 2024, 51(6): 87-95, 105. DOI: 10.19835/j.issn.1008-4495.20230635
Citation: HUANG Dongmei, LU Huanhuan, PAN Xin, QIAO Shuyu, WANG Xinzhao. Analysis of mechanical behavior and acoustic emission characteristic of red sandstone with holes and cracks under uniaxial compression[J]. Mining Safety & Environmental Protection, 2024, 51(6): 87-95, 105. DOI: 10.19835/j.issn.1008-4495.20230635

Analysis of mechanical behavior and acoustic emission characteristic of red sandstone with holes and cracks under uniaxial compression

More Information
  • Received Date: July 26, 2023
  • Revised Date: September 17, 2023
  • In order to study the mechanical behavior and acoustic emission characteristics of rock mass with holes and cracks, the uniaxial compression numerical test of red sandstone specimens with different crack dip angles was carried out by PFC software. The fracture characteristics, stress-strain process and acoustic emission characteristics were analyzed, and the damage evolution characteristics of rock samples were initially discussed. The results show that the peak stress and elastic modulus of single fracture rock samples increase with the increase of fracture dip angle. The peak stress and elastic modulus of the three defect types of rock samples (single fracture, fracture through hole, fracture not through hole) are the smallest when the fracture dip angle is 0°, and the largest when the dip angle is 90°. The rock samples with single fracture are mostly wing cracks developed at the tip of prefabricated cracks. For rock samples with fracture not through hole, except that the crack dip angle is 90°, the instability failure modes of rock samples with other dip angles are all connected along the dip angle extension direction. The larger the fracture dip angle of single fracture rock sample is, the smaller the strain range of obvious emission is. The time when the acoustic emission signal occurs in the rock sample with fracture not through hole is earlier than that of the other two types of rock samples. The three types of rock samples (single fracture, fracture through hole, fracture not through hole) have the highest cumulative ringing count of acoustic emission when the crack dip angle is 90°.

  • [1]
    刘享华, 张科, 李娜, 等. 含孔双裂隙3D打印类岩石试件破裂行为定量识别[J]. 岩土力学, 2021, 42(11): 3017-3028.

    LIU Xianghua, ZHANG Ke, LI Na, et al. Quantitative identification of the failure behavior of the 3D printed rock-like specimen with one hole and two flaws[J]. Rock and Soil Mechanics, 2021, 42(11): 3017-3028.
    [2]
    罗新荣, 杨欢, 李梦坤. 围压加载条件下岩体损伤特征实验及数值模拟分析[J]. 矿业安全与环保, 2019, 46(3): 18-22. http://www.kyaqyhb.com/article/id/1ea876e1-ecce-4d85-b369-c7425e1bb69e

    LUO Xinrong, YANG Huan, LI Mengkun. Experimental and numerical analysis of damage characteristic of rock mass under the condition of confining pressure loading[J]. Mining Safety & Environmental Protection, 2019, 46(3): 18-22. http://www.kyaqyhb.com/article/id/1ea876e1-ecce-4d85-b369-c7425e1bb69e
    [3]
    许江, 刘义鑫, 吴慧, 等. 剪切荷载条件下岩石细观破坏及声发射特性研究[J]. 矿业安全与环保, 2013, 40(1): 12-16.

    XU Jiang, LIU Yixin, WU Hui, et al. Research on microscopic failure and acoustic emission characteristics of rock under shear load[J]. Mining Safety & Environmental Protection, 2013, 40(1): 12-16.
    [4]
    武世岩, 黄彦华. 含弧形裂隙花岗岩裂纹扩展特征PFC模拟[J]. 中南大学学报(自然科学版), 2023, 54(1): 169-182.

    WU Shiyan, HUANG Yanhua. PFC simulation on crack coalescence behavior of granite specimens containing an arc fissure[J]. Journal of Central South University (Science and Technology), 2023, 54(1): 169-182.
    [5]
    ZHANG X P, WONG L N Y. Cracking processes in rock-like material containing a single flaw under uniaxial compression: A numerical study based on parallel bonded-particle model approach[J]. Rock Mechanics and Rock Engineering, 2012, 45(5): 711-737.
    [6]
    刘享华, 张科, 张凯, 等. 孔洞-多裂隙组合型缺陷岩体破裂及分形演化[J]. 地下空间与工程学报, 2021, 17(4): 1021-1027.

    LIU Xianghua, ZHANG Ke, ZHANG Kai, et al. Fracturing and fractal evolution of rock mass containing hole-multiple fissures combined flaws[J]. Chinese Journal of Underground Space and Engineering, 2021, 17(4): 1021-1027.
    [7]
    杨圣奇, 张鹏超, 滕尚永, 等. 含三裂隙巴西圆盘抗拉强度和裂纹特征试验研究[J]. 中国矿业大学学报, 2021, 50(1): 90-98.

    YANG Shengqi, ZHANG Pengchao, TENG Shangyong, et al. Experimental study of tensile strength and crack evolution characteristics of Brazilian discs containing three pre-existing fissures[J]. Journal of China University of Mining & Technology, 2021, 50(1): 90-98.
    [8]
    LOCKNER D A, BYERLEE J D, KUKSENKO V, et al. Quasi-static fault growth and shear fracture energy in granite[J]. Nature, 1991, 350: 39-42.
    [9]
    李昕昊. 类岩石材料的力学及声发射特性研究[D]. 包头: 内蒙古科技大学, 2022.

    LI Xinhao. Study on mechanical and acoustic emission characteristics of rock-like materials[D]. Baotou: Inner Mongolia University of Science & Technology, 2022.
    [10]
    刘希灵, 刘周, 李夕兵, 等. 劈裂荷载下的岩石声发射及微观破裂特性[J]. 工程科学学报, 2019, 41(11): 1422-1432.

    LIU Xiling, LIU Zhou, LI Xibing, et al. Acoustic emission and micro- rupture characteristics of rocks under Brazilian splitting load[J]. Chinese Journal of Engineering, 2019, 41(11): 1422-1432.
    [11]
    牛心刚. 预制裂隙岩石单轴压缩声发射特征研究[J]. 工矿自动化, 2020, 46(2): 73-77.

    NIU Xingang. Research on acoustic emission characteristics of prefabricated fissure rock under uniaxial compression[J]. Industry and Mine Automation, 2020, 46(2): 73-77.
    [12]
    徐锡. 含节理类岩石材料破裂演化及声发射特征研究[D]. 徐州: 中国矿业大学, 2016.

    XU Xi. Study on fracture evolution and acoustic emission characteristics of jointed rock materials[D]. Xuzhou: China University of Mining and Technology, 2016.
    [13]
    CUNDALL P A, STRACK O D L. A discrete numerical model for granular assemblies[J]. Géotechnique, 1979, 29(1): 47-65.
    [14]
    郝保钦, 张昌锁, 王晨龙, 等. 岩石PFC2D模型细观参数确定方法研究[J]. 煤炭科学技术, 2022, 50(4): 132-141.

    HAO Baoqin, ZHANG Changsuo, WANG Chenlong, et al. Study on determination micro-parameters of rock PFC2D model[J]. Coal Science and Technology, 2022, 50(4): 132-141.
    [15]
    蒋明镜, 庞红星, 王华宁, 等. 复合岩体中深埋隧道开挖破坏机理离散元分析[J]. 地下空间与工程学报, 2020, 16(增刊2): 702-709.

    JIANG Mingjing, PANG Hongxing, WANG Huaning, et al. Discrete element analysis on excavation failure mechanism of deep-buried tunnel in composite rock mass[J]. Chinese Journal of Underground Space and Engineering, 2020, 16(Sup. 2): 702-709.
    [16]
    廖泽楚. 基于离散元法的岩石模型及软岩切削模拟研究[D]. 湘潭: 湘潭大学, 2019.

    LIAO Zechu. Study on rock model and soft rock cutting simulation based on discrete element method[D]. Xiangtan: Xiangtan University, 2019.
    [17]
    贺聪. 砂岩拉剪力学-声发射特性试验及离散元模拟研究[D]. 重庆: 重庆大学, 2021.

    HE Cong. Study on mechanical-acoustic emission characteristics test and discrete element simulation of sandstone under tensile-shear state[D]. Chongqing: Chongqing University, 2021.
    [18]
    王林丰. 含预制裂隙花岗岩变形破坏特征三轴试验与离散元数值分析[D]. 泉州: 华侨大学, 2017.

    WANG Linfeng. Analysis of deformation and failure characteristics of pre-cracked Granite samples with triaxial experiments and discrete element method[D]. Quanzhou: Huaqiao University, 2017.
    [19]
    尹延春, 赵同彬, 谭云亮, 等. 基于Otsu图像处理的岩石细观模型重构及数值试验[J]. 岩土力学, 2015, 36(9): 2532-2540.

    YIN Yanchun, ZHAO Tongbin, TAN Yunliang, et al. Reconstruction and numerical test of the mesoscopic model of rock based on Otsu digital image processing[J]. Rock and Soil Mechanics, 2015, 36(9): 2532-2540.
    [20]
    王云飞, 黄正均, 崔芳. 煤岩破坏过程的细观力学损伤演化机制[J]. 煤炭学报, 2014, 39(12): 2390-2396.

    WANG Yunfei, HUANG Zhengjun, CUI Fang. Damage evolution mechanism in the failure process of coal rock based on mesomechanics[J]. Journal of China Coal Society, 2014, 39(12): 2390-2396.
    [21]
    李剑锋. 沥青混合料损伤及开裂过程的声发射表征与性能评价[D]. 北京: 北京科技大学, 2022.

    LI Jianfeng. Acoustic emission characterization and performance evaluation of asphalt mixture damage and cracking process[D]. Beijing: University of Science and Technology Beijing, 2022.
    [22]
    程爱平, 舒鹏飞, 张玉山, 等. 充填体-围岩组合体声发射特征与损伤本构研究[J]. 采矿与安全工程学报, 2020, 37(6): 1238-1245.

    CHENG Aiping, SHU Pengfei, ZHANG Yushan, et al. Acoustic emission characteristics and damage constitution of backfill-surrounding rock combination[J]. Journal of Mining & Safety Engineering, 2020, 37(6): 1238-1245.
    [23]
    叶涛. 基于声发射与图像分析技术的类岩石材料裂隙破坏试验及数值分析[D]. 成都: 四川师范大学, 2022.

    YE Tao. Fracture failure test and numerical analysis of rock-like materials based on acoustic emission and image analysis technology[D]. Chengdu: Sichuan Normal University, 2022.
    [24]
    胡训健, 卞康, 刘建, 等. 离散裂隙网络对岩石力学性质和声发射特性影响的颗粒流分析[J]. 岩土力学, 2022, 43(增刊1): 542-552.

    HU Xunjian, BIAN Kang, LIU Jian, et al. Particle flow code analysis of the effect of discrete fracture network on rock mechanical properties and acoustic emission characteristics[J]. Rock and Soil Mechanics, 2022, 43(Sup. 1): 542-552.
    [25]
    KACHANOV L M. Time of the rupture process under creep conditions, Izy Akad[J]. Nank SSR Otd Tech Nauk, 1958, 8(23): 26-31.
    [26]
    刘保县, 黄敬林, 王泽云, 等. 单轴压缩煤岩损伤演化及声发射特性研究[J]. 岩石力学与工程学报, 2009, 28(a1): 3234-3238.

    LIU Baoxian, HUANG Jinglin, WANG Zeyun, et al. Study on damage evolution and acoustic emission character of coal-rock under uniaxial compression[J]. Chinese Journal of Rock Mechanics and Engineering, 2009, 28(a1): 3234-3238.
    [27]
    LEMAITRE J, SERMAGE J, DESMORAT R. A two scale damage concept applied to fatigue[J]. International Journal of Fracture, 1999, 97(1): 67-81.
  • Related Articles

    [1]SHI Guang. Damage evolution of large diameter borehole through protective coal pillar and law of gas extraction and transport in goaf[J]. Mining Safety & Environmental Protection, 2025, 52(1): 111-121. DOI: 10.19835/j.issn.1008-4495.20231099
    [2]BAI Liwen. Mechanical response and failure characteristics of coal-rock combination under different loading rates[J]. Mining Safety & Environmental Protection, 2024, 51(4): 133-138. DOI: 10.19835/j.issn.1008-4495.20230438
    [3]DENG Xubiao, WANG Xinyue, SUN Benli, JING Chenhui. Investigation on evolution of rock fractures based on acoustic emission bywaveform energy spectrum[J]. Mining Safety & Environmental Protection, 2024, 51(1): 127-132, 139. DOI: 10.19835/j.issn.1008-4495.20221001
    [4]XU Guangyi, LI Haiyan, WU Lei, ZHANG Kai. Study on damage characteristics and mechanical properties of limestone under multiple impact loads[J]. Mining Safety & Environmental Protection, 2023, 50(5): 63-69. DOI: 10.19835/j.issn.1008-4495.2023.05.010
    [5]LI Yingjun, XIAO Yong, HAO Xiaoyu. Evolution analysis of ecological spatial pattern in mining damage area of west surface mine in Fushun[J]. Mining Safety & Environmental Protection, 2023, 50(4): 142-148, 154. DOI: 10.19835/j.issn.1008-4495.2023.04.023
    [6]LYU Xuegang, REN Mengzi, YANG Weihong, WANG Feng. Numerical study on the influence of strip defect angle on the mechanical properties of sandstone[J]. Mining Safety & Environmental Protection, 2020, 47(6): 43-47,53. DOI: 10.19835/j.issn.1008-4495.2020.06.008
    [7]LUO Xinrong, YANG Huan, LI Mengkun. Experimental and Numerical Analysis of Damage Characteristic of Rock Mass under the Condition of Confining Pressure Loading[J]. Mining Safety & Environmental Protection, 2019, 46(3): 18-22.
    [8]YANG Huiming, ZHANG Mingming. Effect of Mechanical Property on Acoustic Emission Activity of Coal during Failure Process[J]. Mining Safety & Environmental Protection, 2018, 45(4): 6-11.
    [9]FU Xiaofeng. The Effect of Temperature and Stress on Permeability and Damage Characteristics of Clay Rock[J]. Mining Safety & Environmental Protection, 2018, 45(2): 21-25.
    [10]LI Huigui, LI Huamin, LI Changxing, CHEN Shanle. Study on the Acoustic Emission Characteristics in the Rupture Process of Medium Grain Sandstone with Natural Structural Plane[J]. Mining Safety & Environmental Protection, 2018, 45(2): 15-20.
  • Cited by

    Periodical cited type(1)

    1. 尹勇, 杨伟, 赵志鹏, 李振雷, 李娜, 杨菲, 卢安良. 不同加载条件砂岩破坏声发射多通道参数差异性研究. 矿业安全与环保. 2025(03) 本站查看

    Other cited types(4)

Catalog

    Article views (82) PDF downloads (16) Cited by(5)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return