• Chinese Core Periodicals
  • Chinese Core Journals of Science and Technology
  • RCCSE Chinese Core Academic Journals
  • Netherlands Abstracts and Citations Database(Scopus)
  • Directory of Open Access Journals(DOAJ)
  • Chemical abstracts(CA)
  • Abstract Journal(РЖ,AJ)
  • Japan Science and Technology Agency(JST)
Advance Search
SHEN Xiong, LI Jizu, ZHAO Dekang. Fisher multivariate statistical method based on PCA for identifying water filling source in mine[J]. Mining Safety & Environmental Protection, 2024, 51(3): 144-152. DOI: 10.19835/j.issn.1008-4495.20230543
Citation: SHEN Xiong, LI Jizu, ZHAO Dekang. Fisher multivariate statistical method based on PCA for identifying water filling source in mine[J]. Mining Safety & Environmental Protection, 2024, 51(3): 144-152. DOI: 10.19835/j.issn.1008-4495.20230543

Fisher multivariate statistical method based on PCA for identifying water filling source in mine

More Information
  • Received Date: June 30, 2023
  • Revised Date: May 24, 2024
  • Available Online: July 01, 2024
  • The multi-source uncertainty of water filling source in the process of coal winning in working face is the research emphasis of mine water disaster prevention. It is often difficult to define the characteristic water quality threshold of each water filling source when the water chemical information is used to identify the water source, and most of the existing analysis and discrimination methods results in low accuracy of discrimination. Based on the samples of potential water filling source from mine inflow in 8210 working face of Majiliang Coal Mine collected on site, the database of samples was established. The water quality types and the training sample database of each water filling source were analyzed by Piper three-line graph method and multi-factor method. Fisher discriminant water filling source model based on principal component analysis was established, and the types of water filling source in goaf at the sampling stage were analyzed and identified on the basis of Euclidean distance discrimination. The results show that the primary source of water filling is Jurassic goaf water, followed by floor limestone water and roof sandstone water. The discriminant precision of this model based on principal component analysis can reach 99.9%. The model is of great guiding significance for the field identification of water filling source in working face.

  • [1]
    范立民. 保水采煤的科学内涵[J]. 煤炭学报, 2017, 42(1): 27-35. https://www.cnki.com.cn/Article/CJFDTOTAL-MTXB201701004.htm

    FAN Limin. Scientific connotation of water-preserved mining[J]. Journal of China Coal Society, 2017, 42(1): 27-35. https://www.cnki.com.cn/Article/CJFDTOTAL-MTXB201701004.htm
    [2]
    ZHANG J C. Investigations of water inrushes from aquifers under coal seams[J]. International Journal of Rock Mechanics and Mining Sciences, 2005, 42(3): 350-360. doi: 10.1016/j.ijrmms.2004.11.010
    [3]
    虎维岳. 新时期煤矿水害防治技术所面临的基本问题[C]//西安: 中国煤炭学会矿井地质专业委员会、中国煤炭工业劳动保护科学技术学会水害防治专业委员会学术交流会论文集, 2005.
    [4]
    GUI H R, SUN L H, CHEN S. Research on goaf water features and disaster formation mechanism in China coalmines[J]. IOP Conference Series: Earth and Environmental Science, 2016, 44: 042036. doi: 10.1088/1755-1315/44/4/042036
    [5]
    SUN W J, ZHOU W F, JIAO J. Hydrogeological classification and water inrush accidents in China's coal mines[J]. Mine Water and the Environment, 2016, 35(2): 214-220. doi: 10.1007/s10230-015-0363-3
    [6]
    GUI H R, LIN M L. Types of water hazards in China coalmines and regional characteristics[J]. Natural Hazards, 2016, 84(2): 1501-1512. doi: 10.1007/s11069-016-2488-5
    [7]
    靳德武. 我国煤矿水害防治技术新进展及其方法论思考[J]. 煤炭科学技术, 2017, 45(5): 141-147. https://www.cnki.com.cn/Article/CJFDTOTAL-MTKJ201705024.htm

    JIN Dewu. New development of water disaster prevention and control technology in China coal mine and consideration on methodology[J]. Coal Science and Technology, 2017, 45(5): 141-147. https://www.cnki.com.cn/Article/CJFDTOTAL-MTKJ201705024.htm
    [8]
    GUI H R, LIN M L, SONG X M. Identification and application of roof bed separation (water) in coal mines[J]. Mine Water and the Environment, 2018, 37(2): 376-384. doi: 10.1007/s10230-018-0518-0
    [9]
    孙魁. 煤矿水害致灾机理研究[D]. 西安: 西安科技大学, 2016.
    [10]
    GUI H R, QIU H L, QIU W Z, et al. Overview of goaf water hazards control in China coalmines[J]. Arabian Journal of Geosciences, 2018, 11(3): 49. doi: 10.1007/s12517-018-3391-z
    [11]
    陈彦美, 陈植华, 於开炳. 地下水水位及水温在查明矿区岩溶水补给条件中的应用: 以福建马坑铁矿为例[J]. 中国岩溶, 2013, 32(1): 64-72. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGYR201301012.htm

    CHEN Yanmei, CHEN Zhihua, YU Kaibing. To identify the recharge conditions of Karst groundwater in mining area by means of groundwater table and water temperature data: A case in Makeng iron mine, Fujian[J]. Carsologica Sinica, 2013, 32(1): 64-72. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGYR201301012.htm
    [12]
    LIN Y, WU Y Z, PAN G Y, et al. Determining and plugging the groundwater recharge channel with comprehensive approach in Siwan coal mine, North China coal basin[J]. Arabian Journal of Geosciences, 2015, 8(9): 6759-6770. doi: 10.1007/s12517-014-1753-8
    [13]
    WANG X Y, JI H Y, WANG Q, et al. Divisions based on groundwater chemical characteristics and discrimination of water inrush sources in the Pingdingshan Coalfield[J]. Environmental Earth Sciences, 2016, 75(10): 872. doi: 10.1007/s12665-016-5616-3
    [14]
    杨建, 刘基, 靳德武, 等. 有机-无机联合矿井突水水源判别方法[J]. 煤炭学报, 2018, 43(10): 2886-2894. https://www.cnki.com.cn/Article/CJFDTOTAL-MTXB201810028.htm

    YANG Jian, LIU Ji, JIN Dewu, et al. Method of determining mine water inrush source based on combination of organic-inorganic water chemistry[J]. Journal of China Coal Society, 2018, 43(10): 2886-2894. https://www.cnki.com.cn/Article/CJFDTOTAL-MTXB201810028.htm
    [15]
    黄磊, 侯泽明, 韩萱, 等. 采煤驱动下复杂井田含水层化学特征与水力联系辨识[J]. 中国环境科学, 2022, 42(6): 2697-2706. doi: 10.3969/j.issn.1000-6923.2022.06.024

    HUANG Lei, HOU Zeming, HAN Xuan, et al. Identification of chemical characteristics and hydraulic connection of each aquifer in complex mine field driven by coal mining[J]. China Environmental Science, 2022, 42(6): 2697-2706. doi: 10.3969/j.issn.1000-6923.2022.06.024
    [16]
    马雷, 钱家忠, 赵卫东. 基于GIS和水质水温的矿井突水水源快速判别[J]. 煤田地质与勘探, 2014, 42(2): 49-53. https://www.cnki.com.cn/Article/CJFDTOTAL-MDKT201402012.htm

    MA Lei, QIAN Jiazhong, ZHAO Weidong. An approach for quickly identifying water-inrush source of mine based on GIS and groundwater chemistry and temperature[J]. Coal Geology & Exploration, 2014, 42(2): 49-53. https://www.cnki.com.cn/Article/CJFDTOTAL-MDKT201402012.htm
    [17]
    靳玉琪, 龙建辉, 任杰, 等. 基于水化学特征的矿区填土地基水害水源分析[J]. 煤炭科学技术, 2022, 50(4): 173-180. https://www.cnki.com.cn/Article/CJFDTOTAL-MTKJ202204018.htm

    JIN Yuqi, LONG Jianhui, REN Jie, et al. Water source analysis of mine filling foundation based on hydrochemical characteristics[J]. Coal Science and Technology, 2022, 50(4): 173-180. https://www.cnki.com.cn/Article/CJFDTOTAL-MTKJ202204018.htm
    [18]
    刘国伟. 滨海矿山地下水动态和水源混合比计算研究: 以三山岛西山矿区为例[D]. 北京: 中国科学院大学, 2020.
    [19]
    董东林, 张健, 林刚, 等. 矿井涌(突)水源混合水识别模型研究[J]. 煤炭工程, 2020, 52(12): 124-127. https://www.cnki.com.cn/Article/CJFDTOTAL-MKSJ202012027.htm

    DONG Donglin, ZHANG Jian, LIN Gang, et al. Identification model of the source of water-inrush[J]. Coal Engineering, 2020, 52(12): 124-127. https://www.cnki.com.cn/Article/CJFDTOTAL-MKSJ202012027.htm
    [20]
    颜丙乾, 任奋华, 蔡美峰, 等. 基于PCA和MCMC的贝叶斯方法的海下矿山水害源识别分析[J]. 工程科学学报, 2019, 41(11): 1412-1421. https://www.cnki.com.cn/Article/CJFDTOTAL-BJKD201911006.htm

    YAN Bingqian, REN Fenhua, CAI Meifeng, et al. Application of PCA and Bayesian MCMC to discriminate between water sources in seabed gold mines[J]. Chinese Journal of Engineering, 2019, 41(11): 1412-1421. https://www.cnki.com.cn/Article/CJFDTOTAL-BJKD201911006.htm
    [21]
    朱敬忠, 李凌, 杨森. 基于因子分析的突水水源类型判别的研究[J]. 矿业安全与环保, 2021, 48(2): 87-91. doi: 10.19835/j.issn.1008-4495.2021.02.017

    ZHU Jingzhong, LI Ling, YANG Sen. Research on discrimination of mine water bursting source based on factor analysis[J]. Mining Safety & Environmental Protection, 2021, 48(2): 87-91. doi: 10.19835/j.issn.1008-4495.2021.02.017
    [22]
    韩忠, 王晓丽, 施龙青. PCA-BP神经网络在矿山岩溶突水水源判别中的应用研究[J]. 河南理工大学学报(自然科学版), 2023, 42(1): 46-53. https://www.cnki.com.cn/Article/CJFDTOTAL-JGXB202301006.htm

    HAN Zhong, WANG Xiaoli, SHI Longqing. Study on application of PCA-BP neural network in discrimination of Karst water inrush source in mine[J]. Journal of Henan Polytechnic University (Natural Science), 2023, 42(1): 46-53. https://www.cnki.com.cn/Article/CJFDTOTAL-JGXB202301006.htm
    [23]
    李超. 谢桥煤矿水化学特征与突水水源判别模型研究[D]. 淮南: 安徽理工大学, 2020.
    [24]
    毛志勇, 崔鹏杰, 黄春娟, 等. KPCA-CS-SVM下的矿井突水水源判别模型[J]. 辽宁工程技术大学学报(自然科学版), 2021, 40(2): 104-111. https://www.cnki.com.cn/Article/CJFDTOTAL-FXKY202102002.htm

    MAO Zhiyong, CUI Pengjie, HUANG Chunjuan, et al. KPCA-CS-SVM discrimination model of mine water inrush source[J]. Journal of Liaoning Technical University (Natural Science), 2021, 40(2): 104-111. https://www.cnki.com.cn/Article/CJFDTOTAL-FXKY202102002.htm
    [25]
    张磊, 许光泉. 矿井突水水源的水化学特征分析及其判别模型[J]. 矿业安全与环保, 2010, 37(2): 7-10. https://www.cnki.com.cn/Article/CJFDTOTAL-ENER201002004.htm

    ZHANG Lei, XU Guangquan. Analysis on hydro-chemical characteristics of mine inrush-water source and its identification model[J]. Mining Safety & Environmental Protection, 2010, 37(2): 7-10. https://www.cnki.com.cn/Article/CJFDTOTAL-ENER201002004.htm
  • Related Articles

    [1]HU Dongxiang, TIAN Bo, LYU Xianghai, LYU Wenmao, REN Yuying. Aquifer water abundance evaluation based on distance function[J]. Mining Safety & Environmental Protection, 2024, 51(6): 147-153, 160. DOI: 10.19835/j.issn.1008-4495.20231049
    [2]YANG Ke, SUN Xiaotian, LIU Shuai, GUO Penghui, ZHANG Zhainan. Pressure relief and permeability enhancement effect and gas extraction scheme of long-distance lower protective layer mining[J]. Mining Safety & Environmental Protection, 2024, 51(2): 1-9. DOI: 10.19835/j.issn.1008-4495.20230263
    [3]SHEN Xiong, LI Jizu, ZHAO Dekang. Fisher Multivariate Statistical Discriminant Method based on Principal Component Analysis for Identifying Water-filled Source in Goaf of Mine: a Case Study from the Majiliang Mine, Northern China[J]. Mining Safety & Environmental Protection.
    [4]XU Junjian. Deformation mechanism and control technology of the external dislocation roadway under the close distance coal seam[J]. Mining Safety & Environmental Protection, 2020, 47(4): 88-92. DOI: 10.19835/j.issn.1008-4495.2020.04.017
    [5]PANG Jinlun. Analysis of roof structure and fracture model of the close distance coal seam group[J]. Mining Safety & Environmental Protection, 2020, 47(3): 105-109. DOI: 10.19835/j.issn.1008-4495.2020.03.022
    [6]MA Li, LEI Yanfei, SU Yaojun, LIU Shangming, WU Ruilong. Fire detection and control of overlying goaf in close-distance coal seam mining[J]. Mining Safety & Environmental Protection, 2020, 47(2): 76-80. DOI: 10.19835/j.issn.1008-4495.2020.02.015
    [7]HOU Enke, FENG Dong, WEN Qiang, CHE Xiaoyang, GAO Tao. Logistic Regression Analysis Method for Identification of Mine Inflow Water Source[J]. Mining Safety & Environmental Protection, 2019, 46(6): 77-83.
    [8]CHEN Gonghua, WEI Zeyun, LIANG Daofu, LI Xijian, LI Ming, WANG Kai. Gas Drainage by High Position Directional Long Borehole in Close Distance Coal Seam Group[J]. Mining Safety & Environmental Protection, 2019, 46(5): 66-69,74.
    [9]CHEN Jianping, DONG Jun, LYU Xiangwei. Research on Risk Level of Coal and Gas Outburst Prediction Based on PCA-Fisher Discriminant Analysis Model[J]. Mining Safety & Environmental Protection, 2018, 45(3): 61-66,71.
    [10]WEN Tingxin, YU Feng'e. Research on Prediction of Coal Spontaneous Combustion Based on KPCA-Fisher Discriminant Analysis[J]. Mining Safety & Environmental Protection, 2018, 45(2): 49-53,58.

Catalog

    Article views (61) PDF downloads (7) Cited by()

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return