• Chinese Core Periodicals
  • Chinese Core Journals of Science and Technology
  • RCCSE Chinese Core Academic Journals
  • Netherlands Abstracts and Citations Database(Scopus)
  • Directory of Open Access Journals(DOAJ)
  • Chemical abstracts(CA)
  • Abstract Journal(РЖ,AJ)
  • Japan Science and Technology Agency(JST)
Advance Search
LYU Fengyuan, CHANG Fugui, WEI Wei, JIANG Zhandong, HAN Fangjun, YANG Xueqin, LI Jun, YANG Xuegui, MA Jinyong. Study on reconstruction of unsteady flow aquifer and determination of roof group hole drainage point[J]. Mining Safety & Environmental Protection, 2024, 51(5): 46-51, 60. DOI: 10.19835/j.issn.1008-4495.20230488
Citation: LYU Fengyuan, CHANG Fugui, WEI Wei, JIANG Zhandong, HAN Fangjun, YANG Xueqin, LI Jun, YANG Xuegui, MA Jinyong. Study on reconstruction of unsteady flow aquifer and determination of roof group hole drainage point[J]. Mining Safety & Environmental Protection, 2024, 51(5): 46-51, 60. DOI: 10.19835/j.issn.1008-4495.20230488

Study on reconstruction of unsteady flow aquifer and determination of roof group hole drainage point

More Information
  • Received Date: June 11, 2023
  • Revised Date: July 23, 2023
  • Taking Baotashan sandstone aquifer in Shicaocun Coal Mine as the engineering background, a three-dimensional visualization model of the aquifer is constructed, and the visualization model is validated by single and porous unsteady flow models. The position of the roof drainage point is estimated by invert calculation. The results show that: the unsteady flow model data of the roof group holes in the mining area agree well with the measured water discharge from the observed holes, the model has high reliability; the optimal solution of aquifer numerical reconstruction can be divided into six zones, it is Ⅰ high permeability medium water storage zone, Ⅱ medium permeability high water storage zone, Ⅲ high permeability high water storage zone, Ⅳ low permeability medium water storage zone, Ⅴ low permeability low water storage zone, Ⅵ medium permeability medium water storage zone; the water drainage point of the well is located between G1-1 and F1-3 observation point, and the water drainage is 150 m 3/d to 200 m 3/d.

  • [1]
    朱吉茂, 孙宝东, 张军, 等. "双碳" 目标下我国煤炭资源开发布局研究[J]. 中国煤炭, 2023, 49(1): 44-50.

    ZHU Jimao, SUN Baodong, ZHANG Jun, et al. Research on Chinas coal resources development layout under the goals of carbon peak and carbon neutrality[J]. China Coal, 2023, 49(1): 44-50.
    [2]
    孙勇凯, 罗西, 王登甲, 等. 西北地区能源生产消费特征与发展路径研究[J]. 中国工程科学, 2022, 24(6): 38-51.

    SUN Yongkai, LUO Xi, WANG Dengjia, et al. Energy production and consumption characteristics and energy development path in northwest china[J]. Strategic Study of CAE, 2022, 24(6): 38-51.
    [3]
    李德彬. 侏罗系煤田顶板砂岩水疏放后采空区涌水规律及预测方法[J]. 煤矿安全, 2019, 50(5): 194-198.

    LI Debin. Laws of water inrush and prediction method in goaf after water drainage from Jurassic Coalfield roof sandstone aquifers[J]. Safety in Coal Mines, 2019, 50(5): 194-198.
    [4]
    吕兆海, 赵长红, 潘长斌, 等. 金家渠煤矿排水体系构建及净化处理工艺应用[J]. 华北科技学院学报, 2019, 16(1): 16-21.

    LV Zhaohai, ZHAO Changhong, PAN Changbin, et al. Construction of Jinjiaqu coal mine's drainage system and application of purification process[J]. Journal of North China Institute of Science and Technology, 2019, 16(1): 16-21.
    [5]
    张文泉, 王在勇, 吴欣焘, 等. 顶板离层水突涌模式及预防技术模拟研究[J]. 煤田地质与勘探, 2021, 49(1): 217-224. doi: 10.3969/j.issn.1001-1986.2021.01.023

    ZHANG Wenquan, WANG Zaiyong, WU Xintao, et al. Investigation and simutation on the model and prevention technology of water inrush from roof bed separation[J]. Coal Geology & Exploration, 2021, 49(1): 217-224. doi: 10.3969/j.issn.1001-1986.2021.01.023
    [6]
    许海涛, 冯吉成, 尹尚先, 等. 基于多变量的太灰含水层突水风险性分类判别研究[J]. 矿业安全与环保, 2022, 49(1): 65-70. doi: 10.19835/j.issn.1008-4495.2022.01.011

    XU Haitao, FENG Jicheng, YIN Shangxian, et al. Study on classification and discrimination of water inrush risk in Taiyuan limestone aquifer based on multivariate analysis[J]. Mining Safety & Environmental Protection, 2022, 49(1): 65-70. doi: 10.19835/j.issn.1008-4495.2022.01.011
    [7]
    李德彬. 煤矿顶板含水层溃水溃沙灾害井下挡水墙建造技术[J]. 矿业安全与环保, 2019, 46(3): 74-77. http://www.kyaqyhb.com/article/id/39c6e270-bc5a-4b17-9c3b-beebb72d21cc

    LI Debin. Construction technology of water-retaining wall after water and sand bursting in the aquifer of coal mine roof[J]. Mining Safety & Environmental Protection, 2019, 46(3): 74-77. http://www.kyaqyhb.com/article/id/39c6e270-bc5a-4b17-9c3b-beebb72d21cc
    [8]
    NEWMAN C, AGIOUTANTIS Z, BOEDE JIMENEZ LEON G. Assessment of potential impacts to surface and subsurface water bodies due to longwall mining[J]. International Journal of Mining Science and Technology, 2017, 27(1): 57-64.
    [9]
    范立民, 迟宝锁, 王宏科, 等. 鄂尔多斯盆地北部直罗组含水层研究进展与水害防治建议[J]. 煤炭学报, 2022, 47(10): 3535-3546.

    FAN Limin, CHI Baosuo, WANG Hongke, et al. Research progress of aquifer of Zhiluo Formation in northern Ordos Basin and suggestions on water hazard prevention[J]. Journal of China Coal Society, 2022, 47(10): 3535-3546.
    [10]
    范立民, 孙魁, 李成, 等. 榆神矿区煤矿防治水的几点思考[J]. 煤田地质与勘探, 2021, 49(1): 182-188.

    FAN Limin, SUN Kui, LI Cheng, et al. Thoughts on mine water control and treatment in Yushen mining area[J]. Coal Geology & Exploration, 2021, 49(1): 182-188.
    [11]
    李猛, 张吉雄, 邓雪杰, 等. 含水层下固体充填保水开采方法与应用[J]. 煤炭学报, 2017, 42(1): 127-133.

    LI Meng, ZHANG Jixiong, DENG Xuejie, et al. Method of water protection based on solid backfill mining under water bearing strata and its application[J]. Journal of China Coal Society, 2017, 42(1): 127-133.
    [12]
    张东升, 范钢伟, 张世忠, 等. 保水开采覆岩等效阻水厚度的内涵、算法与应用[J]. 煤炭学报, 2022, 47(1): 128-136.

    ZHANG Dongsheng, FAN Gangwei, ZHANG Shizhong, et al. Equivalent water-resisting overburden thickness for water-conservation mining: Conception, method and application[J]. Journal of China Coal Society, 2022, 47(1): 128-136.
    [13]
    FAN G W, ZHANG D S. Mechanisms of aquifer protection in underground coal mining[J]. Mine Water and the Environment, 2015, 34(1): 95-104.
    [14]
    ZHANG D S, FAN G W, MA L Q, et al. Aquifer protection during longwall mining of shallow coal seams: A case study in the Shendong Coalfield of China[J]. International Journal of Coal Geology, 2011, 86(2/3): 190-196.
    [15]
    张健. 西部矿区煤炭开采地下水流场演替机理及含水层自修复研究[D]. 包头: 内蒙古科技大学, 2022.

    ZHANG Jian. Study on succession mechanism of ground water flow field and self-healing of aquifer in coal mining in western China[D]. Baotou: Inner Mongolia University of Science & Technology, 2022.
    [16]
    郭小铭. 彬长矿区洛河组沉积控水及开采扰动流场响应特征研究[D]. 北京: 煤炭科学研究总院, 2022.

    GUO Xiaoming. Sedimentary controlling groundwater in Luohe formation and the water flow field response regularity after mining disturbancein Binchang mining area[D]. Beijing: China Coal Research Institute, 2022.
    [17]
    靳德武, 刘基, 许峰, 等. 榆神矿区浅埋煤层减水开采中预疏放标准确定方法[J]. 煤炭学报, 2021, 46(1): 220-229.

    JIN Dewu, LIU Ji, XU Feng, et al. Method of determining of pre-drainage standard in water-decrease mining of shallow seam in Yushen mining area[J]. Journal of China Coal Society, 2021, 46(1): 220-229.
    [18]
    方刚, 刘柏根, 靳德武, 等. 穿越富水煤层段井巷防治水技术研究[J]. 煤炭科学技术, 2022, 50(7): 252-260.

    FANG Gang, LIU Baigen, JIN Dewu, et al. Research on water prevention and control technology for mine roadway engineering crossing water-rich coal seam[J]. Coal Science and Technology, 2022, 50(7): 252-260.
    [19]
    张全, 杨建, 胡骁, 等. 混合纳滤反渗透净化洁净预疏放水工艺和水质预测[J]. 煤炭学报, 2022, 47(4): 1647-1656.

    ZHANG Quan, YANG Jian, HU Xiao, et al. Purification process and water quality prediction of clean drainage water by mixed nanofiltration reverse osmosis[J]. Journal of China Coal Society, 2022, 47(4): 1647-1656.
    [20]
    曾一凡, 孟世豪, 吕扬, 等. 基于矿井安全与生态水资源保护等多目标约束的超前疏放水技术[J]. 煤炭学报, 2022, 47(8): 3091-3100.

    ZENG Yifan, MENG Shihao, LV Yang, et al. Advanced drainage technology based on multi-objective constraint of mine safety and water resources protection[J]. Journal of China Coal Society, 2022, 47(8): 3091-3100.
    [21]
    庞凯, 武强, 曾一凡. 含水层与多烧变岩含水体互层下煤层顶板突(涌)水风险性预测[J]. 煤炭工程, 2022, 54(12): 135-141.

    PANG Kai, WU Qiang, ZENG Yifan. Prediction of roof water inrush risk under the complex condition of interbedded aquifer and multi burnt rock aquifers[J]. Coal Engineering, 2022, 54(12): 135-141.
    [22]
    王文学, 郝清扬, 薛景元, 等. 含水层底部单孔非完整疏放水井渗流特征砂槽试验[J]. 煤炭学报, 2023, 48(3): 1290-1301.

    WANG Wenxue, HAO Qingyang, XUE Jingyuan, et al. Sand tank test on seepage characteristics of a single partially penetrating de-watering well from the bottom of an overlying aquifer[J]. Journal of China Coal Society, 2023, 48(3): 1290-1301.
  • Related Articles

    [1]QI Qingxin, WANG Shouguang, WANG Meimei, CUI Chunyang, LIU Huaguang, WANG Jiamin, MU Pengyu, ZHU Xiaojing, LI Haitao, XU Xuewei. Research on numerical-physical simulation methods and applications for coal mine rock burst[J]. Mining Safety & Environmental Protection, 2025, 52(1): 1-13. DOI: 10.19835/j.issn.1008-4495.20250005
    [2]QI Yunxia, LIAN Qingwang. Study on numerical simulation of pulse water injection in coal seam based on flow-solid coupling[J]. Mining Safety & Environmental Protection, 2024, 51(5): 29-37, 45. DOI: 10.19835/j.issn.1008-4495.20230511
    [3]QIE Jianyu. Numerical simulation of heat CO 2 injection to increase CH 4[J]. Mining Safety & Environmental Protection, 2023, 50(5): 76-81. DOI: 10.19835/j.issn.1008-4495.2023.05.012
    [4]CHEN Yuexia, CHU Tingxiang, CHEN Peng. Numerical simulation analysis of effective gas drainage area in different number of drillings[J]. Mining Safety & Environmental Protection, 2021, 48(5): 23-27,32. DOI: 10.19835/j.issn.1008-4495.2021.05.005
    [5]GUO Ping, SHEN Dafu. Optimization design and numerical simulation of supporting scheme for deep mine roadway[J]. Mining Safety & Environmental Protection, 2021, 48(4): 87-91. DOI: 10.19835/j.issn.1008-4495.2021.04.016
    [6]WANG Guanghong. Numerical simulation study of gas drainage based on directional long drilling[J]. Mining Safety & Environmental Protection, 2021, 48(4): 38-42. DOI: 10.19835/j.issn.1008-4495.2021.04.009
    [7]CAO Jie, ZHAO Xusheng, LIU Yanbao. Numerical simulation on multiphysics field distribution characteristics of coal and gas outburst[J]. Mining Safety & Environmental Protection, 2021, 48(2): 7-11. DOI: 10.19835/j.issn.1008-4495.2021.02.002
    [8]YAN Qinyang, LIU Xingkui, CHANG Xuhua. Numerical simulation of spontaneous combustion characteristics of open-pit coal piles[J]. Mining Safety & Environmental Protection, 2020, 47(5): 29-33. DOI: 10.19835/j.issn.1008-4495.2020.05.006
    [9]LUO Zhenmin, WANG Zijin, SU Bin, NI Xing. Numerical simulation of gas migration law in goaf based on FLUENT[J]. Mining Safety & Environmental Protection, 2020, 47(3): 17-21. DOI: 10.19835/j.issn.1008-4495.2020.03.004
    [10]HUANG Qingfeng, KANG Shusheng, HE Xingyi, LI Faxi. Numerical Simulation and Engineering Application of Yielding Control Supporting in Soft Rock Roadway of 1 000 m Deep Well[J]. Mining Safety & Environmental Protection, 2018, 45(6): 48-52.
  • Cited by

    Periodical cited type(7)

    1. 胡杰. 基于声发射特征参数的突出随掘预测指标研究与应用. 煤矿机械. 2025(04): 158-161 .
    2. 胡杰,孙臣,杨旭. 声发射传感器随掘监测有效范围考察. 煤矿机械. 2024(01): 46-48 .
    3. 李文龙,王新,齐凯. 煤巷掘进突出危险声发射监测关键技术研究. 电声技术. 2024(09): 186-188 .
    4. 齐凯,李文龙,王新. 煤巷掘进声发射监测信号噪声处理技术研究. 电声技术. 2024(10): 22-24 .
    5. 曹建来. 石门揭煤过程中应力与位移演化特征研究. 中国矿山工程. 2022(04): 69-73 .
    6. 谢长虹,邹云龙,蒋腾. 复杂地质条件下高突煤层群立井揭煤技术. 能源与环保. 2020(06): 144-149 .
    7. 袁安营. 深部高瓦斯煤层大巷揭煤区域防突技术. 煤炭工程. 2019(06): 78-80 .

    Other cited types(0)

Catalog

    Article views (64) PDF downloads (7) Cited by(7)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return