Citation: | LI Peng, SU Chao, DUAN Pengkun. Analysis of roof deformation factors in coal roadway heading face based on response surface method[J]. Mining Safety & Environmental Protection, 2023, 50(4): 81-88, 96. DOI: 10.19835/j.issn.1008-4495.2023.04.014 |
The roof stability of heading face is affected by many factors and the driving speed is slow due to the unreasonable value of unsupported distance. In order to solve the problem, this paper studies the three-way stress and deformation law of coal roadway heading face roof based on response surface method through numerical simulation, and analyzes the key factors affecting the roof deformation of heading face and their interaction relationship. The results show that the stress adjustment and deformation begin to appear at about one time of hole diameter in front of the heading face, and the stress adjustment is basically stable at one time of hole diameter behind the heading face. The roof deformation is basically stable at about two times of hole diameter behind the heading face. Roof deformation is negatively correlated with roof mudstone cohesion and support strength, but positively correlated with roof mudstone thickness and unsupported distance. Multi-factor interaction analysis by response surface method is an effective means to determine the reasonable unsupported distance of heading face under specific conditions. According to the geological conditions of 33082 roadway in Zhaozhuang Coal Mine, the reasonable unsupported distance is set as 2 m, and the support strength is increased to 0.25 MPa. The application shows that the roadway stability is guaranteed, and the roadway driving speed is also increased from the original 180 m/month to 350 m/month, which significantly improves the driving speed.
[1] |
康红普. 我国煤矿巷道围岩控制技术发展70年及展望[J]. 岩石力学与工程学报, 2021, 40(1): 1-30. https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX202101002.htm
|
[2] |
刘畅, 姜鹏飞, 王子越, 等. 煤巷快速成巷技术现状及应用效果评价方法研究[J]. 煤炭科学技术, 2020, 48(11): 26-33. https://www.cnki.com.cn/Article/CJFDTOTAL-MTKJ202011004.htm
|
[3] |
马宏伟, 王世斌, 毛清华, 等. 煤矿巷道智能掘进关键共性技术[J]. 煤炭学报, 2021, 46(1): 310-320. https://www.cnki.com.cn/Article/CJFDTOTAL-MTXB202101029.htm
|
[4] |
王虹, 王建利, 张小峰. 掘锚一体化高效掘进理论与技术[J]. 煤炭学报, 2020, 45(6): 2021-2030. https://www.cnki.com.cn/Article/CJFDTOTAL-MTXB202006011.htm
|
[5] |
吴拥政, 吴建星, 王峰. 巷道掘支锚连续平行作业机理及其应用[J]. 煤炭科学技术, 2016, 44(6): 39-44. https://www.cnki.com.cn/Article/CJFDTOTAL-MTKJ201606006.htm
|
[6] |
康红普, 姜鹏飞, 高富强, 等. 掘进工作面围岩稳定性分析及快速成巷技术途径[J]. 煤炭学报, 2021, 46(7): 2023-2045. https://www.cnki.com.cn/Article/CJFDTOTAL-MTXB202107002.htm
|
[7] |
马睿. 巷道快速掘进空顶区顶板破坏机理及稳定性控制[D]. 徐州: 中国矿业大学, 2016.
|
[8] |
吴朋起. 煤巷快速掘进空顶自稳规律及施工方案优化研究[D]. 徐州: 中国矿业大学, 2017.
|
[9] |
范明建. 深井大断面煤巷掘进合理空顶距的确定[J]. 煤炭技术, 2016, 35(11): 60-62. https://www.cnki.com.cn/Article/CJFDTOTAL-MTJS201611024.htm
|
[10] |
柏建彪, 肖同强, 李磊. 巷道掘进空顶距确定的差分方法及其应用[J]. 煤炭学报, 2011, 36(6): 920-924. https://www.cnki.com.cn/Article/CJFDTOTAL-MTXB201106007.htm
|
[11] |
YANG S, HUA X Z, LIU X, et al. Analysis of stability factors of roadway roof and determination of unsupported roof distance[J]. Shock and Vibration, 2021: 1-13.
|
[12] |
褚晓威, 吴拥政, 吴志刚, 等. 掘进迎头顶板变形特征及合理空顶距确定方法[J]. 采矿与安全工程学报, 2020, 37(5): 908-917. https://www.cnki.com.cn/Article/CJFDTOTAL-KSYL202005006.htm
|
[13] |
康红普, 王金华, 高富强. 掘进工作面围岩应力分布特征及其与支护的关系[J]. 煤炭学报, 2009, 34(12): 1585-1593. https://www.cnki.com.cn/Article/CJFDTOTAL-MTXB200912003.htm
|
[14] |
唐兵, 刘昊, 夏永军. 高地应力特软煤层掘进工作面应力场分布规律研究[J]. 矿业安全与环保, 2011, 38(4): 21-23. https://www.cnki.com.cn/Article/CJFDTOTAL-ENER201104006.htm
|
[15] |
夏永军, 杨慧明, 唐兵. 煤巷炮掘过程围岩应力场演化规律的数值研究[J]. 矿业安全与环保, 2010, 37(3): 1-4. https://www.cnki.com.cn/Article/CJFDTOTAL-ENER201003004.htm
|
[16] |
周辉, 渠成堃, 王竹春, 等. 深井巷道掘进围岩演化特征模拟与扰动应力场分析[J]. 岩石力学与工程学报, 2017, 36(8): 1821-1831. https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX201708002.htm
|
[17] |
周辉, 胡善超, 卢景景, 等. 煤矿深井巷道掘进全过程围岩变形破坏原位测试[J]. 岩土力学, 2015, 36(12): 3523-3530. https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX201512024.htm
|
[18] |
侯公羽. 基于开挖面空间效应的围岩—支护相互作用机制[J]. 岩石力学与工程学报, 2011, 30(增刊1): 2871-2877. https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX2011S1038.htm
|
[19] |
张晓飞, 王刘成. 基于开挖面空间效应的巷道围岩支护时机分析[J]. 煤矿安全, 2015, 46(8): 212-215. https://www.cnki.com.cn/Article/CJFDTOTAL-MKAQ201508062.htm
|
[20] |
张斌, 苏学贵, 段振雄, 等. 受掘进扰动影响的巷道围岩稳定性控制研究[J]. 矿业安全与环保, 2020, 47(6): 19-24. doi: 10.19835/j.issn.1008-4495.2020.06.004
|
[21] |
李文洲, 司林坡, 卢志国, 等. 煤单轴压缩起裂强度确定及其关键因素影响分析[J]. 煤炭学报, 2021, 46(增刊2): 670-680. https://www.cnki.com.cn/Article/CJFDTOTAL-MTXB2021S2007.htm
|
1. |
叶海旺,邓毕军,陈东方. 基于RSM-FLAC的石墨矿采空区失稳概率定量评价. 矿业研究与开发. 2025(01): 112-119 .
![]() | |
2. |
袁立. 煤巷快速掘进空顶留设距离与支护技术研究. 陕西煤炭. 2025(01): 14-18 .
![]() | |
3. |
赵泓超,王秦生. 高突矿井未开采保护层区域瓦斯治理研究. 矿业安全与环保. 2024(03): 56-64 .
![]() |