Citation: | WANG Zhe, QIU Anbing, GONG Min, WU Haojun, HU Guangfeng, WANG Sijie, ZHOU Shijun. Research on strength identification of rock-like materials based on measured drilling parameters[J]. Mining Safety & Environmental Protection, 2023, 50(4): 55-62. DOI: 10.19835/j.issn.1008-4495.2023.04.010 |
In order to establish the relationship between drilling parameters of rock drill and rock strength, and carry out research on rock strength identification, an automatic collection system of drilling parameters by truck was built. In the test, three kinds of strength concrete, C30, C40, and C50, were selected to simulate the rock of the same strength, and different drilling parameters were dynamically collected. Four SVM classification models were constructed based on the Support Vector Machine (SVM) algorithm. The drilling data was trained and learned, and the kernel function coefficient was modified by optimization algorithm. The model was optimized according to classification accuracy and evaluation indicators. The results show that the accuracy of SVM model based on polynomial kernel and Gaussian kernel function can reach 90%, which can effectively identify the strength of rock-like materials.
[1] |
TEALE R. The concept of specific energy in rock drilling[J]. International Journal of Rock Mechanics and Mining Sciences & Geomechanics Abstracts, 1965, 2(1): 57-73.
|
[2] |
KELESSIDIS V C. Rock drillability prediction from in situ determined unconfined compressive strength of rock[J]. Journal of the Southern African Institute of Mining and Metallurgy, 2011, 111(6): 429-436.
|
[3] |
谭卓英, 蔡美峰, 岳中琦, 等. 基于岩石可钻性指标的地层界面识别理论与方法[J]. 北京科技大学学报, 2006(9): 803-807. doi: 10.13374/j.issn1001-053x.2006.09.001
|
[4] |
曹正林, 周丽清, 王志章, 等. 利用钻井参数进行随钻岩性预测[J]. 天然气工业, 2000(1): 48-50. https://www.cnki.com.cn/Article/CJFDTOTAL-TRQG200001011.htm
|
[5] |
于广东, 孟国营, 冯学文. 煤矿巷道顶板强度随钻识别系统与钻速优化研究[J]. 河南理工大学学报(自然科学版), 2022, 41(3): 112-118. doi: 10.16186/j.cnki.1673-9787.2020100044
|
[6] |
吕鹏飞, 邱林. 基于PSO-LSSVM的矿井冲击地压分级预测研究[J]. 矿业安全与环保, 2021, 48(1): 120-125. doi: 10.19835/j.issn.1008-4495.2021.01.023
|
[7] |
刘凯, 邹正银, 王志章, 等. 基于机器学习的火山岩岩性智能识别及预测[J]. 特种油气藏, 2022, 29(1): 38-45. https://www.cnki.com.cn/Article/CJFDTOTAL-TZCZ202201006.htm
|
[8] |
石锁, 余继峰, 曹慧涛, 等. 基于高斯核SVM的储层岩性识别: 以东濮凹陷上古生界碎屑岩为例[J]. 中国科技论文, 2020, 15(1): 112-118. https://www.cnki.com.cn/Article/CJFDTOTAL-ZKZX202001017.htm
|
[9] |
YAO Z H, WU L D. A clustering approach based on Marr's operator with its application to lithologic recognition[J]. Pattern Recognition Letters, 1991, 12(8): 451-456.
|
[10] |
刘会林, 朱明, 张爱霞. 应用神经网络方法评定巷道围岩稳定性[J]. 矿业安全与环保, 2006(4): 37-39. https://www.cnki.com.cn/Article/CJFDTOTAL-ENER200604013.htm
|
[11] |
黄晓红, 董诗琪, 李静, 等. 基于GMM+SVM的声发射花岗岩裂纹识别研究[J]. 矿业安全与环保, 2022, 49(2): 21-28. doi: 10.19835/j.issn.1008-4495.2022.02.004
|
[12] |
张幼振, 张宁, 邵俊杰, 等. 基于钻进参数聚类的含煤地层岩性模糊识别[J]. 煤炭学报, 2019, 44(8): 2328-2335. https://www.cnki.com.cn/Article/CJFDTOTAL-MTXB201908007.htm
|
[13] |
汪学清, 刘爽, 李秋燕, 等. 基于K折交叉验证的SVM隧道围岩分级判别[J]. 矿冶工程, 2021, 41(6): 126-128. https://www.cnki.com.cn/Article/CJFDTOTAL-KYGC202106031.htm
|
[14] |
牟丹, 王祝文, 黄玉龙, 等. 基于SVM测井数据的火山岩岩性识别: 以辽河盆地东部坳陷为例[J]. 地球物理学报, 2015, 58(5): 1785-1793. https://www.cnki.com.cn/Article/CJFDTOTAL-DQWX201505028.htm
|
[15] |
武中原, 张欣, 张春雷, 等. 基于LSTM循环神经网络的岩性识别方法[J]. 岩性油气藏, 2021, 33(3): 120-128. https://www.cnki.com.cn/Article/CJFDTOTAL-YANX202103012.htm
|
[16] |
LIU Z B, LI L, FANG X L, et al. Hard-rock tunnel lithology prediction with TBM construction big data using a global-attention-mechanism-based LSTM network[J]. Automation in Construction, 2021(10): 36-47.
|
[17] |
WANG M N, ZHAO S G, TONG J J, et al. Intelligent classification model of surrounding rock of tunnel using drilling and blasting method[J]. Underground Space, 2021, 6(5): 539-550.
|
[18] |
SHIRKAVAND M J, AZIZI H, GHASEMI I, et al. A correlation between microstructure and rheological properties of broad MWD high-density polyethylene[J]. Iranian Polymer Journal, 2015, 24(11): 953-963.
|
[19] |
EL-KOSASY A M, HUSSEIN L A, SALAMA N N, et al. Kinetic study and peak purity determination of bupropion hydro-chloride using RRLC/DAD and HPLC/MWD methods[J]. RSC Ad-vances, 2015, 5(79): 64274-64285.
|
[20] |
奉国和. SVM分类核函数及参数选择比较[J]. 计算机工程与应用, 2011, 47(3): 123-124. https://www.cnki.com.cn/Article/CJFDTOTAL-JSGG201103038.htm
|
[21] |
徐雪锋, 周志鸿, 田翔, 等. 法国蒙特贝(Montabert)液压凿岩机技术特点[J]. 凿岩机械气动工具, 2019(1): 1-15. https://www.cnki.com.cn/Article/CJFDTOTAL-ZYJG201901001.htm
|
1. |
叶海旺,邓毕军,陈东方. 基于RSM-FLAC的石墨矿采空区失稳概率定量评价. 矿业研究与开发. 2025(01): 112-119 .
![]() | |
2. |
袁立. 煤巷快速掘进空顶留设距离与支护技术研究. 陕西煤炭. 2025(01): 14-18 .
![]() | |
3. |
赵泓超,王秦生. 高突矿井未开采保护层区域瓦斯治理研究. 矿业安全与环保. 2024(03): 56-64 .
![]() |