Citation: | XU Yang, LI Dayong. Experimental study on the influence of liquid nitrogen cyclic freezing and thawing on the evolution characteristics of coal porosity and gas adsorption performance[J]. Mining Safety & Environmental Protection, 2023, 50(3): 42-47. DOI: 10.19835/j.issn.1008-4495.2023.03.008 |
Based on the high pressure capacity method, helium injection method was used to carry out corresponding experimental research on the influence of liquid nitrogen cycle freezing and thawing on the evolution characteristics of coal porosity and gas adsorption performance. The results show that with the increase of the times of liquid nitrogen cycle freezing and thawing, the parameters of coal porosity and gas adsorption performance show a very significant increase trend. The analysis shows that the mechanism of the effect of liquid nitrogen cyclic freezing and thawing on the evolution characteristics of coal porosity and gas adsorption performance is as follows: the damage effect of liquid nitrogen cycle freezing and thawing on the cracks of coal mass itself; the coupling effect of expansion force and temperature stress associated with the water phase change in the pores and fractures of coal mass damages the structure of coal mass; the deformation of mineral particles in coal mass under the action of severe temperature difference, which leads to the destruction of coal cementation structure.
[1] |
国家能源局: 推动能源绿色低碳发展为如期实现"双碳"目标提供支撑[R/OL]. (2022-10-17)[2022-11-20]. https://m.gmw.cn/baijia/2022-10/17/36093822.html.
|
[2] |
程波, 向真才, 郭恒, 等. 煤岩材料对瓦斯吸附性能的研究进展[J]. 材料导报, 2018, 32(9): 1513-1518. https://www.cnki.com.cn/Article/CJFDTOTAL-CLDB201809018.htm
|
[3] |
张晓刚, 姜文忠, 都锋. 高瓦斯低透气性煤层增透技术发展现状及前景展望[J]. 煤矿安全, 2021, 52(2): 169-176. https://www.cnki.com.cn/Article/CJFDTOTAL-MKAQ202102032.htm
|
[4] |
田苗苗, 张磊, 薛俊华, 等. 液氮致裂煤体技术研究现状及展望[J]. 煤炭科学技术, 2022, 50(7): 191-198. https://www.cnki.com.cn/Article/CJFDTOTAL-MTKJ202207021.htm
|
[5] |
任韶然, 范志坤, 张亮, 等. 液氮对煤岩的冷冲击作用机制及试验研究[J]. 岩石力学与工程学报, 2013, 32(增刊2): 3790-3794. https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX2013S2101.htm
|
[6] |
张路路, 李波, 张强, 等. 液氮冷浸煤岩孔隙损伤和渗透率演化特性研究[J]. 岩石力学与工程学报, 2018, 37(增刊2): 3938-3946. https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX2018S2015.htm
|
[7] |
李和万, 左建平, 王来贵, 等. 液氮冷加载对围压煤体结构损伤的影响规律研究[J]. 采矿与安全工程学报, 2020, 37(4): 804-811. https://www.cnki.com.cn/Article/CJFDTOTAL-KSYL202004019.htm
|
[8] |
严敏, 张一真, 林海飞, 等. 液氮浸融对不同预制温度煤体损伤特性试验研究[J]. 煤炭学报, 2020, 45(8): 2813-2823. https://www.cnki.com.cn/Article/CJFDTOTAL-MTXB202008012.htm
|
[9] |
张路路, 李波, 任永婕, 等. 液氮冷浸煤岩增透作用影响因素分析[J]. 安全与环境学报, 2018, 18(4): 1290-1295. https://www.cnki.com.cn/Article/CJFDTOTAL-AQHJ201804009.htm
|
[10] |
卢硕, 张磊, 薛俊华, 等. 液氮溶浸作用对不同煤阶煤样渗流特性的影响[J]. 煤炭学报, 2020, 45(5): 1835-1844. https://www.cnki.com.cn/Article/CJFDTOTAL-MTXB202005029.htm
|
[11] |
魏则宁, 翟成, 孙勇, 等. 液氮冷冲击时长对煤体致裂效果的影响[J]. 中国矿业大学学报, 2022, 51(2): 273-282. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGKD202202007.htm
|
[12] |
罗平亚. 关于大幅度提高我国煤层气井单井产量的探讨[J]. 天然气工业, 2013, 33(6): 1-6. https://www.cnki.com.cn/Article/CJFDTOTAL-TRQG201306002.htm
|
[13] |
李晓伟, 李磊, 赵东, 等. 液氮冻融对煤体孔隙演变和吸附行为的影响研究[J]. 煤矿安全, 2022, 53(1): 1-7. https://www.cnki.com.cn/Article/CJFDTOTAL-MKAQ202201001.htm
|
[14] |
张仰强. 瓦斯抽采钻孔受液氮冷冲击作用的影响范围研究[J]. 矿业安全与环保, 2020, 47(3): 100-104. doi: 10.19835/j.issn.1008-4495.2020.03.021
|
[15] |
张志刚. 关于温度对煤吸附瓦斯性能影响的研究[J]. 河南理工大学学报(自然科学版), 2015, 34(2): 162-166. https://www.cnki.com.cn/Article/CJFDTOTAL-JGXB201502005.htm
|
[16] |
周科平, 张亚民, 李杰林, 等. 粗、细粒径花岗岩冻融损伤机理及其演化规律[J]. 北京科技大学学报, 2013, 35(10): 1249-1255. https://www.cnki.com.cn/Article/CJFDTOTAL-BJKD201310001.htm
|
[17] |
楚亚培, 张东明, 杨瀚, 等. 液氮冻结和冻融循环作用下煤样力学特性试验研究[J]. 煤炭科学技术, 2023, 51(5): 82-92. https://www.cnki.com.cn/Article/CJFDTOTAL-MTKJ202305009.htm
|
[18] |
唐建平, 孙东玲, 武文宾, 等. 水驱气理论在煤层水力压裂工程实践中的应用[J]. 矿业安全与环保, 2019, 46(5): 51-55. http://www.kyaqyhb.com/cn/article/id/0f4ce2b3-8ad0-47c5-9170-8d21a3649194
|
1. |
张峰,车禹恒,题正义,秦洪岩,李佳臻. 综放工作面垮落带高度测定方法研究. 矿业安全与环保. 2021(02): 49-54 .
![]() | |
2. |
杨亚威,翟英达. 超前支承压力区煤巷支护关键技术研究. 矿业安全与环保. 2020(06): 13-18 .
![]() |