Citation: | ZHANG Shukun, YANG Haojie, FU Kang, GUO Changyu, MA Xuhui, YAO Feng, XIAO Haoran, LIU Jiajun. Research on the development and performance test of phosphogypsum filling materials for mines[J]. Mining Safety & Environmental Protection, 2024, 51(1): 133-139. DOI: 10.19835/j.issn.1008-4495.20221037 |
In order to study the feasibility at preparing mine filling materials with solid waste phosphogypsum, the filling material was prepared by adding calcium carbide slag and phosphogypsum slag, respectively, as aggregate. The single-factor experiment and orthogonal experiments were conducted to explore the effects of calcium carbide mass fraction, slag mass fraction, material mass fraction and drying temperature on the compressive strength of filling materials. The micromorphology characteristics of these samples was analyzed by SEM as well. The results show that when the mass fraction of phosphogypsum, calcium carbide and slag is 65%, 5% and 30%, respectively, the strength and initial fluidity of the filling materials with the mass fraction of 65% is within the filling requirements. The strength of filling material peaked at 130 ℃ for 8 hours. Calcium carbide slag stimulates the activity of slag. Phosphogypsum and slag form needle-like ettringite, calcium aluminate hydrate gel and calcium silicate hydrate gel, both of which enhances the strength of the filling materials.
[1] |
贾子龙, 刘志红, 宋杨, 等. Zr改性磷石膏/粉煤灰复合材料对选矿废水中油酸钠的吸附[J]. 材料导报, 2020, 34(7): 7015-7019. https://www.cnki.com.cn/Article/CJFDTOTAL-CLDB202007004.htm
JIA Zilong, LIU Zhihong, SONG Yang, et al. Adsorption of sodium oleate in mineral processing wastewater by Zr modified phosphogypsum/fly ash composite[J]. Materials Reports, 2020, 34(7): 7015-7019. https://www.cnki.com.cn/Article/CJFDTOTAL-CLDB202007004.htm
|
[2] |
兰文涛, 吴爱祥, 王贻明. 凝水膨胀充填复合材料的配比优化与形成机制[J]. 复合材料学报, 2019, 36(6): 1536-1545. https://www.cnki.com.cn/Article/CJFDTOTAL-FUHE201906021.htm
LAN Wentao, WU Aixiang, WANG Yiming. Formulation optimization and formation mechanism of condensate expansion and filling composites[J]. Acta Materiae Compositae Sinica, 2019, 36(6): 1536-1545. https://www.cnki.com.cn/Article/CJFDTOTAL-FUHE201906021.htm
|
[3] |
姜关照, 吴爱祥, 王贻明, 等. 生石灰对半水磷石膏充填胶凝材料性能影响[J]. 硅酸盐学报, 2020, 48(1): 86-93. https://www.cnki.com.cn/Article/CJFDTOTAL-GXYB202001014.htm
JIANG Guanzhao, WU Aixiang, WANG Yiming, et al. Effect of lime on properties of filling cementitious material prepared by hemihydrate phosphogypsum[J]. Journal of the Chinese Ceramic Society, 2020, 48(1): 86-93. https://www.cnki.com.cn/Article/CJFDTOTAL-GXYB202001014.htm
|
[4] |
HERNÁNDEZ-CEBALLOS M A, VARGAS A, ARNOLD D, et al. The role of mesoscale meteorology in modulating the
222Rn concentrations in Huelva (Spain)-impact of phosphogypsum piles[J]. Journal of Environmental Radioactivity, 2015, 145: 1-9. doi: 10.1016/j.jenvrad.2015.03.023
|
[5] |
ZHOU J, SHENG Z M, LI T T, et al. Preparation of hardened tiles from waste phosphogypsum by a new intermittent pressing hydration[J]. Ceramics International, 2016, 42(6): 7237-7245. doi: 10.1016/j.ceramint.2016.01.117
|
[6] |
朱雪涛, 杜兵, 阿曼角, 等. 半水磷石膏地下充填材料的磷和氟浸出特性及地球化学模拟[J]. 中国环境科学, 2022, 42(2): 680-687. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGHJ202202021.htm
ZHU Xuetao, DU Bing, A Manjiao, et al. Leaching properties of phosphorus and fluorine in hemihydrate phosphogypsum as underground filiing materials and geochemical simulation[J]. China Environmental Science, 2022, 42(2): 680-687. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGHJ202202021.htm
|
[7] |
JIANG G Z, WU A X, WANG Y M, et al. Low cost and high efficiency utilization of hemihydrate phosphogypsum: Used as binder to prepare filling material[J]. Construction and Building Materials, 2018, 167: 263-270. doi: 10.1016/j.conbuildmat.2018.02.022
|
[8] |
兰文涛, 吴爱祥, 王贻明, 等. 基于正交试验的半水磷石膏充填配比优化[J]. 中国有色金属学报, 2019, 29(5): 1083-1091. https://www.cnki.com.cn/Article/CJFDTOTAL-ZYXZ201905022.htm
LAN Wentao, WU Aixiang, WANG Yiming, et al. Optimization of filling ratio of hemihydrate phosphogypsum based on orthogonal test[J]. The Chinese Journal of Nonferrous Metals, 2019, 29(5): 1083-1091. https://www.cnki.com.cn/Article/CJFDTOTAL-ZYXZ201905022.htm
|
[9] |
赵风文, 胡建华, 曾平平, 等. 基于正交试验的碱基-磷石膏胶结充填体配比优化[J]. 中国有色金属学报, 2021, 31(4): 1096-1105. https://www.cnki.com.cn/Article/CJFDTOTAL-ZYXZ202104026.htm
ZHAO Fengwen, HU Jianhua, ZENG Pingping, et al. Optimization research of base-phosphogypsum cemented backfill ratio based on orthogonal test[J]. The Chinese Journal of Nonferrous Metals, 2021, 31(4): 1096-1105. https://www.cnki.com.cn/Article/CJFDTOTAL-ZYXZ202104026.htm
|
[10] |
李夕兵, 刘冰, 姚金蕊, 等. 全磷废料绿色充填理论与实践[J]. 中国有色金属学报, 2018, 28(9): 1845-1865. https://www.cnki.com.cn/Article/CJFDTOTAL-ZYXZ201809016.htm
LI Xibing, LIU Bing, YAO Jinrui, et al. Theory and practice of green mine backfill with whole phosphate waste[J]. The Chinese Journal of Nonferrous Metals, 2018, 28(9): 1845-1865. https://www.cnki.com.cn/Article/CJFDTOTAL-ZYXZ201809016.htm
|
[11] |
杨啸. 磷石膏基早强胶凝材料开发与废弃物资源化利用[D]. 北京: 北京科技大学, 2017.
YANG Xiao. Development of phosphogypsum -based early strength cementitious material and resource utilization of waste[D]. Beijing: University of Science and Technology Beijing, 2017.
|
[12] |
李兵, 韦莎. 电石渣改性磷石膏水泥缓凝剂的研究[J]. 无机盐工业, 2019, 51(7): 74-76. https://www.cnki.com.cn/Article/CJFDTOTAL-WJYG201907018.htm
LI Bing, WEI Sha. Modification of phosphogypsum cement retarder by carbide slag[J]. Inorganic Chemicals Industry, 2019, 51(7): 74-76. https://www.cnki.com.cn/Article/CJFDTOTAL-WJYG201907018.htm
|
[13] |
王继宇. 电石渣对磷石膏的性能影响及机理研究[D]. 济南: 济南大学, 2020.
WANG Jiyu. Study on the effect and mechanism of acetylene sludge on the properties of phosphogypsum[D]. Jinan: University of Jinan, 2020.
|
[14] |
刘满超, 李超, 冯艳超, 等. 粉煤灰—矿渣—电石渣复合胶凝材料的制备及应用[J]. 环境科学与技术, 2018, 41(12): 42-48. https://www.cnki.com.cn/Article/CJFDTOTAL-FJKS201812007.htm
LIU Manchao, LI Chao, FENG Yanchao, et al. Preparation and application of fly ash-blast furnace slag-carbide slag based binder[J]. Environmental Science & Technology, 2018, 41(12): 42-48. https://www.cnki.com.cn/Article/CJFDTOTAL-FJKS201812007.htm
|
[15] |
陈秋松, 张琦, 齐冲冲, 等. 磷石膏充填体强度和浸出毒性的温变规律[J]. 中国有色金属学报, 2021, 31(4): 1084-1095. https://www.cnki.com.cn/Article/CJFDTOTAL-ZYXZ202104025.htm
CHEN Qiusong, ZHANG Qi, QI Chongchong, et al. Temperature-depending characteristics of strength and leaching toxicity of phosphogympsum-based cemented paste backfill[J]. The Chinese Journal of Nonferrous Metals, 2021, 31(4): 1084-1095. https://www.cnki.com.cn/Article/CJFDTOTAL-ZYXZ202104025.htm
|
[16] |
李宏业, 杨晓炳, 温震江, 等. 磷石膏—矿渣复合胶凝材料配比优化试验[J]. 金属矿山, 2021(3): 28-33. https://www.cnki.com.cn/Article/CJFDTOTAL-JSKS202103005.htm
LI Hongye, YANG Xiaobing, WEN Zhenjiang, et al. Optimization test of the proportion of phosphogypsum-slag composite cementitious material[J]. Metal Mine, 2021(3): 28-33. https://www.cnki.com.cn/Article/CJFDTOTAL-JSKS202103005.htm
|
[17] |
陕西省建筑科学研究院. 建筑砂浆基本性能试验方法标准: JGJ/T 70—2009[S]. 北京: 中国建筑工业出版社, 2009: 71-74.
|
[18] |
中国建筑科学研究院. 普通混凝土长期性能和耐久性能试验方法标准: GB/T 50082—2009[S]. 北京: 中国建筑工业出版社, 2009: 174-175.
|
[19] |
中国建筑科学研究院. 水泥胶砂流动度测定方法: GB/T 2419—2005[S]. 北京: 中国建筑工业出版社, 2005: 1-3.
|
[20] |
黄庆享, 李亮. 充填材料及其强度研究[J]. 煤矿开采, 2011, 16(3): 38-42. https://www.cnki.com.cn/Article/CJFDTOTAL-MKKC201103013.htm
HUANG Qingxiang, LI Liang. Research on stowing material and its strength[J]. Coal Mining Technology, 2011, 16(3): 38-42. https://www.cnki.com.cn/Article/CJFDTOTAL-MKKC201103013.htm
|
[21] |
张竞, 李骏. 不同温度热处理橡胶-尾砂充填体能量损耗本构关系[J]. 采矿与岩层控制工程学报, 2023, 5(4): 88-97. https://www.cnki.com.cn/Article/CJFDTOTAL-MKKC202304009.htm
ZHANG Jing, LI Jun. Constitutive relation of energy loss of rubber-tailings backfill treated with different temperatures[J]. Journal of Mining and Strata Control Engineering, 2023, 5(4): 88-97. https://www.cnki.com.cn/Article/CJFDTOTAL-MKKC202304009.htm
|