Advance Search
LI Luyuan, ZHANG Xinghua, KANG Jianhua. Numerical simulation study on optimization of ultra-high pressure post mixed abrasive water jet nozzle[J]. Mining Safety & Environmental Protection, 2022, 49(5): 109-113, 118. DOI: 10.19835/j.issn.1008-4495.2022.05.018
Citation: LI Luyuan, ZHANG Xinghua, KANG Jianhua. Numerical simulation study on optimization of ultra-high pressure post mixed abrasive water jet nozzle[J]. Mining Safety & Environmental Protection, 2022, 49(5): 109-113, 118. DOI: 10.19835/j.issn.1008-4495.2022.05.018

Numerical simulation study on optimization of ultra-high pressure post mixed abrasive water jet nozzle

More Information
  • Received Date: September 02, 2021
  • Revised Date: November 26, 2021
  • Available Online: November 27, 2022
  • In order to improve the efficiency of abrasive water jet system for cutting hard and thick roof, the influence of nozzle structure parameters on the velocity and distribution of abrasive particles was studied by using numerical simulation software. The results show that the outlet velocity of abrasive increases with the increase of water nozzle diameter, and the abrasive particles are mainly concentrated in the outer boundary area of water jet on the exit section; when the inlet angle and position of the abrasive are 60° and 3 mm, respectively, the velocity of the abrasive particles is the maximum, and the axial regional concentration is the best. Based on the above rules, orthogonal experiment and variance analysis are carried out on the influencing factors, and the optimal parameters are obtained as the diameter of water nozzle is 1 mm, the position of abrasive inlet is 0 mm, and the angle is 60°. Through the slit experiment comparison, it is found that the slit width is decreased by 12.0% and the depth is increased by 26.5% after nozzle optimization.

  • [1]
    何满潮, 宋振骐, 王安, 等. 长壁开采切顶短壁梁理论及其110工法——第三次矿业科学技术变革[J]. 煤炭科技, 2017(1): 10. https://www.cnki.com.cn/Article/CJFDTOTAL-META201701002.htm
    [2]
    LU Y, TANG J, GE Z, et al. Hard rock drilling technique with abrasive water jet assistance[J]. International Journal of Rock Mechanics & Mining Sciences, 2013, 60: 47-56.
    [3]
    张小军. 低透气性煤层水射流瓦斯增透关键技术研究[J]. 西安科技大学学报, 2021, 41(3): 410-416. https://www.cnki.com.cn/Article/CJFDTOTAL-XKXB202103005.htm
    [4]
    杨增强, 王琛艳, 朱栋, 等. 高压水射流钻割一体化防冲机理分析及其数值模拟研究[J]. 矿业安全与环保, 2021, 48(1): 17-22. https://ener.cbpt.cnki.net/WKB/WebPublication/paperDigest.aspx?paperID=a1d81e41-8b8c-4ded-a237-4ecfba704770
    [5]
    葛兆龙, 赵汉云, 卢义玉, 等. 高压水射流冲击作用下煤-砂岩-页岩损伤破裂特征[J]. 振动与冲击, 2021, 40(13): 174-181. https://www.cnki.com.cn/Article/CJFDTOTAL-ZDCJ202113023.htm
    [6]
    张永将, 黄振飞, 季飞. 基于水力割缝卸压的煤岩与瓦斯动力灾害防控技术[J]. 煤炭科学技术, 2021, 49(4): 133-141. https://www.cnki.com.cn/Article/CJFDTOTAL-MTKJ202104017.htm
    [7]
    李生舟, 乔伟, 王建. 深部突出煤层超高压水射流割缝工艺参数研究与应用[J]. 矿业安全与环保, 2020, 47(4): 57-61. https://ener.cbpt.cnki.net/WKB/WebPublication/paperDigest.aspx?paperID=09322ae1-c3d4-4beb-9a34-5e105f1daa45
    [8]
    刘延保, 巴全斌, 申凯, 等. 瓦斯抽采钻孔水射流协同修护技术研究与应用[J]. 矿业安全与环保, 2020, 47(2): 56-60. https://ener.cbpt.cnki.net/WKB/WebPublication/paperDigest.aspx?paperID=173e7b79-851d-4fa5-9cfb-c751667f759a
    [9]
    CROW S C. A theory of hydraulic rock cutting[J]. International Journal of Rock Mechanics & Mining Sciences & Geomechanics Abstracts, 1973, 10(6): 567-584.
    [10]
    HASHISH M. Milling with abrasive-waterjets: a preliminary investigation[C]//Proceeding of the fourth US water jet conference, 1987.
    [11]
    FAIRHURST R M, HERON R A, SAUNDERS D H. 'DIAJET'-A new abrasive water jet cutting technique[J]. Proc. Int. Symp. Jet Cut. Technol, 1986.
    [12]
    FAIR J C. Development of high-pressure abrasive-jet drilling[J]. Journal of Petroleum Technology, 1981, 33: 1379-1388.
    [13]
    卢义玉, 秦旭前, 汤积仁, 等. 磨料射流定向切顶系统的设计与研制[J]. 重庆大学学报, 2022, 45(2): 1-13. https://www.cnki.com.cn/Article/CJFDTOTAL-FIVE202202001.htm
    [14]
    TAZIBT A, PARSY F, ABRIAK N. Theoretical analysis of the particle acceleration process in abrasive water jet cutting[J]. Computational Materials Science, 1996, 5(1): 243-254.
    [15]
    明瑞, 胡东. 后混合式磨料射流切割深度模型研究[J]. 科技创新导报, 2015, 12(35): 141-146. https://www.cnki.com.cn/Article/CJFDTOTAL-ZXDB201535059.htm
    [16]
    强争荣, 马毅青, 缪小进, 等. 基于CFD的磨料水射流加工中粒子圆度影响研究[J]. 润滑与密封, 2020, 45(7): 62-67. https://www.cnki.com.cn/Article/CJFDTOTAL-RHMF202007012.htm
    [17]
    NARAYANAN C, BALZ R, WEISS D A, et al. Modelling of abrasive particle energy in water jet machining[J]. Journal of Materials Processing Tech, 2013, 213(12): 2201-2210.
    [18]
    王凤超, 郭楚文, 周大鹏. 后混合磨料射流磨料混合过程能量损失的实验研究[J]. 煤矿机械, 2014, 35(8): 86-88. https://www.cnki.com.cn/Article/CJFDTOTAL-MKJX201408039.htm
    [19]
    朱自强. 应用计算流体力学[M]. 北京: 北京航空航天大学出版社, 1998.
    [20]
    GRANT G, TABAKOFF W. Erosion prediction in turbomachinery resulting from environmental solid particles[J]. Journal of Aircraft, 2012, 12(5): 471-478.
    [21]
    DA Axinte, KARPUSCHEWSKI B, KONG M C, et al. High Energy Fluid Jet Machining (HEFJet-Mach): From scientific and technological advances to niche industrial applications[J]. CIRP Annals - Manufacturing Technology, 2014, 63(2): 751-771.

Catalog

    Article views (100) PDF downloads (9) Cited by()

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return