Citation: | ZHAO Xusheng, MA Guolong, ZHOU Mi. Coal and gas outburst intelligent early-warning method and system[J]. Mining Safety & Environmental Protection, 2022, 49(4): 150-156, 162. DOI: 10.19835/j.issn.1008-4495.2022.04.020 |
Aiming at the problems of the traditional coal and gas outburst early-warning system, such as insufficient self-learning ability, low information fusion, poor intelligence level and low early warning accuracy, based on correlation analysis and evidence theory algorithm, an independent dynamic optimization method of prominent early warning indicators and a multi indicator fusion decision-making model are established, and a prominent intelligent early warning system is developed. The construction mode of hazard identification affairs set is put forward; the asymmetric binary processing method for early warning indexis established; the construction method of association rules between early warning indicators and outburst itemsis put forward; a function reflecting the size of the false alarm rate is defined; the optimal method of warning index based on association rule analysis is formed. A evidence theory identification framework of coal and gas outburst early warning fusion analysis is put forward. The basic probability distribution function of evidence body is constructed; the synthesis method of evidence is given; a function reflecting the danger probability is constructed; a multi-index fusion decision-making method for coal and gas outburst early warning has been formed. On this basis, the intelligent early warning system of coal and gas outburst based on service architecture model is developed, which has the functions of online monitoring, intelligent analysis, integrated early warning, online release and remote query. The field application results show that the accuracy rate is 91.53%, and no missing alarm. It provides a good technical support for the prevention and control of coal and gas outburst.
[1] |
胡千庭, 赵旭生. 中国煤与瓦斯突出事故现状及其预防对策建议[J]. 矿业安全与环保, 2012, 39(5): 1-5. doi: 10.3969/j.issn.1008-4495.2012.05.001
|
[2] |
王恩元, 张国锐, 张超林, 等. 我国煤与瓦斯突出防治理论技术研究进展与展望[J]. 煤炭学报, 2022, 47(1): 297-322. https://www.cnki.com.cn/Article/CJFDTOTAL-MTXB202201021.htm
|
[3] |
张超林, 王恩元, 王奕博, 等. 近20年我国煤与瓦斯突出事故时空分布及防控建议[J]. 煤田地质与勘探, 2021, 49(4): 134-141. doi: 10.3969/j.issn.1001-1986.2021.04.016
|
[4] |
国家矿山安全监察局关于加强煤与瓦斯突出防治工作的通知(矿安〔2022〕68号)[Z]. 北京: 国家矿山安全监察局, 2022.
|
[5] |
胡千庭. 预防煤矿瓦斯灾害新技术的研究[J]. 矿业安全与环保, 2006, 33(5): 1-7. doi: 10.3969/j.issn.1008-4495.2006.05.001
|
[6] |
ZHAO Xusheng, HU Qianting, NING Xiaoliang. Research on comprehensive early-warning technology of coal and gas outburst[J]. Procedia Engineering, 2011, 26: 2376-2382. doi: 10.1016/j.proeng.2011.11.2448
|
[7] |
杨玉中, 吴立云, 何俊, 等. 煤矿瓦斯重大灾害预警理论及应用[M]. 北京: 北京师范大学出版社, 2010.
|
[8] |
宁小亮. 煤与瓦斯突出预警技术研究现状及发展趋势[J]. 工矿自动化, 2019, 45(8): 25-31. https://www.cnki.com.cn/Article/CJFDTOTAL-MKZD201908005.htm
|
[9] |
张庆华, 马国龙. 我国煤矿重大灾害预警技术现状及智能化发展展望[J]. 智能矿山, 2020, 1(1): 52-62. https://www.cnki.com.cn/Article/CJFDTOTAL-ZNKS202001009.htm
|
[10] |
赵旭生, 宁小亮, 张庆华, 等. 煤与瓦斯突出预警方法探讨[J]. 工矿自动化, 2018, 44(1): 6-10. https://www.cnki.com.cn/Article/CJFDTOTAL-MKZD201801021.htm
|
[11] |
关于加快煤矿智能化发展的指导意见[N]. 中国煤炭报, 2020-03-05(2).
|
[12] |
王国法. 《煤矿智能化建设指南(2021年版)》解读——从编写组视角进行解读[J]. 智能矿山, 2021, 2(4): 2-9. https://www.cnki.com.cn/Article/CJFDTOTAL-ZNKS202104044.htm
|
[13] |
赵旭生, 马国龙, 乔伟, 等. 基于事故树分析的煤与瓦斯突出预警指标体系[J]. 矿业安全与环保, 2019, 46(3): 37-43. http://www.kyaqyhb.com/cn/article/id/a6bbd710-681a-428a-9a34-7920b2568548
|
[14] |
赵旭生, 邹云龙. 近两年我国煤与瓦斯突出事故原因分析及对策[J]. 矿业安全与环保, 2010, 37(1): 84-87. https://www.cnki.com.cn/Article/CJFDTOTAL-ENER201001030.htm
|
[15] |
刘鹏, 张燕, 陶建辉, 等. 数据挖掘基础[M]. 北京: 清华大学出版社, 2018.
|
[16] |
冯红伟. 数据挖掘技术的研究及应用[D]. 西安: 西北工业大学, 2002.
|
[17] |
张崇兴. 基于预测和D-S证据理论的多传感器数据融合研究[D]. 成都: 电子科技大学, 2021.
|
[18] |
李嘉仪. 基于D-S理论的冲突证据融合算法[D]. 哈尔滨: 黑龙江大学, 2019.
|
[19] |
柯小路. 证据理论中信任函数的合成方法研究与应用[D]. 合肥: 中国科学技术大学, 2016.
|
[20] |
蒋伟进, 许宇晖, 郭宏, 等. 基于多智能体的多维证据动态信任计算模型[J]. 山东大学学报(理学版), 2015, 50(1): 1-11. https://www.cnki.com.cn/Article/CJFDTOTAL-SDDX201501002.htm
|
[21] |
赵旭生. 煤与瓦斯突出综合预警方法研究[D]. 青岛: 山东科技大学, 2012.
|