• Chinese Core Periodicals
  • Chinese Core Journals of Science and Technology
  • RCCSE Chinese Core Academic Journals
  • Netherlands Abstracts and Citations Database(Scopus)
  • Directory of Open Access Journals(DOAJ)
  • Chemical abstracts(CA)
  • Abstract Journal(РЖ,AJ)
  • Japan Science and Technology Agency(JST)
Advance Search
DU Xueling. Numerical simulation of shallow buried contiguous seams mining under karst condition[J]. Mining Safety & Environmental Protection, 2021, 48(2): 28-32. DOI: 10.19835/j.issn.1008-4495.2021.02.006
Citation: DU Xueling. Numerical simulation of shallow buried contiguous seams mining under karst condition[J]. Mining Safety & Environmental Protection, 2021, 48(2): 28-32. DOI: 10.19835/j.issn.1008-4495.2021.02.006

Numerical simulation of shallow buried contiguous seams mining under karst condition

More Information
  • Received Date: April 14, 2020
  • Revised Date: April 14, 2020
  • Available Online: September 16, 2022
  • In order to study the mining influence under karst conditions, based on the geological conditions of Qinglong Coal Mine in Bijie, Guizhou, a mining model with karst structure was established, and the effects of mining disturbance, mining speed, mining direction and other factors were simulated. The research shows that the karst structure causes the sudden change of the roof stress, and the sudden change position is more obvious in the boundary between karst and non-karst area; the vertical stress in the coal seam directly below the karst structure is relatively small, but the outer periphery may be larger, disaster prevention should be prepared before reaching directly below the karst structure; upper protective layer mining of shallow buried contiguous seams has a better pressure relief effect on the lower protected layer, but the permeability enhanced effect is relatively limited; properly increasing the mining speed will help alleviate the high-stress state of the roof, but it will also reduce the permeability enhanced effect of the lower protected layer; when the lower coal seam adopts the same mining direction as the upper coal seam, the safety is relatively higher.
  • [1]
    张信宝,王世杰,白晓永,等.贵州石漠化空间分布与喀斯特地貌、岩性、降水和人口密度的关系[J].地球与环境, 2013, 41(1):1-6.
    [2]
    张绍云,周忠发,熊康宁,等.贵州洞穴空间格局及影响因素分析[J].地理学报, 2016, 71(11):1998-2009.
    [3]
    杨明德.论贵州岩溶水赋存的地貌规律性[J].中国岩溶, 1982(2):4-14.
    [4]
    褚学伟,党爽,丁坚平.贵州岩溶塌陷分布及其影响因素分析[J].人民长江, 2015, 46(12):42-44.
    [5]
    赵子浩,刘进晓,王来河,等.近水平煤层覆岩导水裂隙带高度预计与实测[J].矿业安全与环保, 2017, 44(2):66-69.
    [6]
    杜学领.厚层坚硬煤系地层冲击地压机理及防治研究[D].北京:中国矿业大学(北京), 2016.
    [7]
    尹尚先,连会青,刘德民,等.华北型煤田岩溶陷落柱研究70年:成因·机理·防治[J].煤炭科学技术, 2019, 47(11):1-29.
    [8]
    虎维岳.华北东部深部岩溶及煤矿岩溶水害特征[J].煤田地质与勘探, 2010, 38(2):23-27.
    [9]
    粟俊江,王毅,张天模,等.川南富安井田阳新灰岩水文地质条件研究[J].矿业安全与环保, 2016, 43(3):89-92.
    [10]
    杜学领.贵州省煤炭工业发展探讨[J].煤炭经济研究, 2020, 40(1):54-62.
    [11]
    江俊杰.青龙矿构造特征及其对矿井水的控制机理[D].徐州:中国矿业大学, 2016.
    [12]
    施凤刚.青龙煤矿长兴灰岩岩溶突水事故分析研究[J].山东煤炭科技, 2016(3):135-136.
    [13]
    杨琪.山区煤矿采动覆岩导水裂隙带发育规律研究[D].徐州:中国矿业大学, 2017.
    [14]
    徐宏杰,桑树勋,易同生,等.黔西地应力场特征及构造成因[J].中南大学学报(自然科学版), 2014, 45(6):1960-1966.
    [15]
    郭佳奇,徐子龙,李宏飞.饱水对岩溶灰岩力学性质与纵波波速的影响[J].土木建筑与环境工程, 2015, 37(2):60-66.
    [16]
    袁超峰,袁永,朱成,等.薄直接顶大采高综采工作面切顶留巷合理参数研究[J].煤炭学报, 2019, 44(7):1981-1990.
    [17]
    夏彬伟,龚涛,于斌,等.长壁开采全过程采场矿压数值模拟方法[J].煤炭学报, 2017, 42(9):2235-2244.
    [18]
    赵同彬,郭伟耀,谭云亮,等.煤厚变异区开采冲击地压发生的力学机制[J].煤炭学报, 2016, 41(7):1659-1666.
    [19]
    白海波,戎虎仁,杨城,等.新集二矿下组煤底板石灰岩层隔水性及应用研究[J].采矿与安全工程学报, 2015, 32(3):363-368.
    [20]
    赵鹏翔,卓日升,李树刚,等.综采工作面推进速度对瓦斯运移优势通道演化的影响[J].煤炭科学技术, 2018, 46(7):99-108.
  • Related Articles

    [1]DU Huailong, LIU Zhongping, TIAN Zhicheng. Research and application of stress disturbance characteristic of overlying residual coal pillar in contiguous seams[J]. Mining Safety & Environmental Protection, 2024, 51(6): 112-121. DOI: 10.19835/j.issn.1008-4495.20240033
    [2]GAO Xiaoxu, SHI Xiangqian, SHI Xinyu, GUO Weibin. Study on the optimization of reserved size of section coal pillar in shallow buried working face[J]. Mining Safety & Environmental Protection, 2023, 50(3): 68-73, 80. DOI: 10.19835/j.issn.1008-4495.2023.03.012
    [3]TANG Jianhua, WU Jinan, YU Weijian. Study on evolution law of stress-fissure field of overburden in contiguous seams extraction[J]. Mining Safety & Environmental Protection, 2023, 50(3): 48-55. DOI: 10.19835/j.issn.1008-4495.2023.03.009
    [4]ZHANG Yulei. Study on directional long borehole extraction technology in roof of coal seam group with high gas content[J]. Mining Safety & Environmental Protection, 2022, 49(1): 59-64. DOI: 10.19835/j.issn.1008-4495.2022.01.010
    [5]LIU Xia, ZHAI Chunjia, LI Changhao. Failure characteristics and reinforcement support of surrounding rock in gob-side entry driving affected by residual coal pillar of upper coal seam[J]. Mining Safety & Environmental Protection, 2021, 48(1): 101-107. DOI: 10.19835/j.issn.1008-4495.2021.01.020
    [6]XU Junjian. Deformation mechanism and control technology of the external dislocation roadway under the close distance coal seam[J]. Mining Safety & Environmental Protection, 2020, 47(4): 88-92. DOI: 10.19835/j.issn.1008-4495.2020.04.017
    [7]PANG Jinlun. Analysis of roof structure and fracture model of the close distance coal seam group[J]. Mining Safety & Environmental Protection, 2020, 47(3): 105-109. DOI: 10.19835/j.issn.1008-4495.2020.03.022
    [8]GAO Feng, SHI Meng, WANG Zhanling, ZHANG Teng. Study on Supporting Technology of Gob-side Roadway with Small Coal Pillar at Shallow Buried Depth Extra Thick Coal Seam[J]. Mining Safety & Environmental Protection, 2019, 46(6): 72-76,83.
    [9]ZHAO Bingchao, HE Shenglin, LU Xiaoxiao. Analysis on Influence Factors of Surface Subsidence in Shallow Coal Seam Mining[J]. Mining Safety & Environmental Protection, 2019, 46(4): 104-107,112.
    [10]HUANG Kai, WU Jiwen, ZHAI Xiaorong, HAN Yun. Numerical Simulation Study on Coal Pillar Setting at Fault Sun in Longdong Coal Mine[J]. Mining Safety & Environmental Protection, 2018, 45(1): 20-23.
  • Cited by

    Periodical cited type(5)

    1. 吴本林,陈浩,杨龙高,黄家兴,蔡红. 基于层次分析法和模糊评价法的防治水技术. 陕西煤炭. 2024(10): 153-157+184 .
    2. 郭靖. 厚煤层疏水风化损伤规律及微爆破治理片帮技术. 矿业安全与环保. 2023(02): 109-113 . 本站查看
    3. 刘浩,王森. 近距离煤层上行开采破碎围岩巷道支护技术. 内蒙古煤炭经济. 2023(07): 163-165 .
    4. 任高峰,王鑫,周汉红,邓德志,廖兵,向小东,胡世士,张聪瑞,SAMI Kakar,THEONESTE Ndayiragije. 爆破作用下岩溶对边坡稳定性的数值模拟研究. 爆破. 2023(04): 192-200 .
    5. 朱斌,赵智强,王健. 岩溶地区城轨交通工程勘察设计与施工技术实践. 现代城市轨道交通. 2021(S1): 36-40 .

    Other cited types(4)

Catalog

    Article views (38) PDF downloads (7) Cited by(9)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return