• Chinese Core Periodicals
  • Chinese Core Journals of Science and Technology
  • RCCSE Chinese Core Academic Journals
  • Netherlands Abstracts and Citations Database(Scopus)
  • Directory of Open Access Journals(DOAJ)
  • Chemical abstracts(CA)
  • Abstract Journal(РЖ,AJ)
  • Japan Science and Technology Agency(JST)
Advance Search
LI Xiyuan, RONG Hai, FAN Chaojun. Simulation study on gas control of hygraulic flushing in hole and drainage drilling in low permeability coal seam[J]. Mining Safety & Environmental Protection, 2021, 48(1): 11-16. DOI: 10.19835/j.issn.1008-4495.2021.01.003
Citation: LI Xiyuan, RONG Hai, FAN Chaojun. Simulation study on gas control of hygraulic flushing in hole and drainage drilling in low permeability coal seam[J]. Mining Safety & Environmental Protection, 2021, 48(1): 11-16. DOI: 10.19835/j.issn.1008-4495.2021.01.003

Simulation study on gas control of hygraulic flushing in hole and drainage drilling in low permeability coal seam

More Information
  • Received Date: February 25, 2020
  • Revised Date: April 06, 2020
  • Available Online: September 14, 2022
  • In order to eliminate the outburst risk of Ji15-16-24100 working face in the process of preparation and mining in Pingmei No. 10 Coal Mine, the gas control process of hygraulic flushing in hole combined with drainage drilling was studied by fine simulation. The interaction of gas desorption, seepage and coal-rock deformation was analyzed, and the stress-seepage coupling mathematical equation of gas migration in coal seam was constructed. Finite element software was used to solve it, and the whole process of mining of this coal seam was simulated by numerical simulation, including boreholes along seam, through seam in floor roadway, hygraulic flushing in hole to shield wind roadway, machine roadway and open-off cut tunneling in Ji15-16-24100 working face, the influence of gas drainage on reducing the risk of outburst in working face was studied, and the drainage effect was verified by the field monitoring results. The results show that the comprehensive gas drainage of Ji15-16 coal seam can effectively reduce the risk of outburst risk in the process of preparation and mining in Ji15-16-24100 working face, the residual gas pressure value in Ji15-16 coal seam is reduced to the range from 0.25 MPa to 0.45 MPa under this design scheme, the corresponding residual gas content of coal seam is reduced to the range from 2.8 m3/t to 4.5 m3/t, they meet the prevention requirements of coal and gas outburst in Pingmei No. 10 Coal Mine.
  • [1]
    谢和平, 高峰, 周宏伟, 等. 煤与瓦斯共采中煤层增透率理论与模型研究[J]. 煤炭学报, 2013, 38(7): 1101-1108.
    [2]
    罗明坤, 范超军, 李胜, 等.煤与瓦斯突出的地质动力系统失稳判据研究[J].中国矿业大学学报,2018,47(1): 137-144.
    [3]
    王凯, 李波, 魏建平, 等. 水力冲孔钻孔周围煤层透气性变化规律[J]. 采矿与安全工程学报, 2013, 30(5): 778-784.
    [4]
    李胜, 罗明坤, 周利峰, 等. 高瓦斯综采工作面瓦斯立体抽采技术与应用[J].辽宁工程技术大学学报(自然科学版),2018,37(2):244-250.
    [5]
    郝光生,马钱钱.王坡煤矿本煤层预抽钻孔布置方式优化研究与效果考察[J].煤矿安全,2019,50(2):148-151.
    [6]
    辛雨. 平煤十矿低透气性煤层立体瓦斯抽采技术研究[D]. 阜新:辽宁工程技术大学, 2017.
    [7]
    周西华, 门金龙, 宋东平,等. 液态CO2爆破煤层增透最优钻孔参数研究[J]. 岩石力学与工程学报, 2016, 35(3): 524-529.
    [8]
    李守国, 吕进国, 贾宝山, 等. 高压空气爆破低透气性煤层增透技术应用研究[J]. 中国安全科学学报, 2016, 26(4): 119-125.
    [9]
    周建斌. 割缝卸压致裂技术在碎软低渗煤层煤巷掘进中的应用[J].煤矿安全,2019,50(7):191-194.
    [10]
    范超军, 李胜, 兰天伟, 等.不同因素对水力压裂促抽煤层瓦斯的影响[J]. 中国安全科学学报, 2017, 27(12): 97-102.
    [11]
    周西华, 周丽君, 范超军, 等. 低透煤层水力压裂促进瓦斯抽采模拟与试验研究[J]. 中国安全科学学报, 2017, 27(10): 81-86.
    [12]
    梁文勖. 基于达标抽采量的顺层预抽钻孔抽采半径确定方法[J].煤矿安全,2019,50(5):19-22.
    [13]
    赵旭生, 刘延保, 申凯, 等. 煤层瓦斯抽采效果影响因素分析及技术对策[J].煤矿安全,2019, 50(1):179-183.
    [14]
    熊伟.瓦斯抽采漏气失效钻孔修复技术研究[J].矿业安全与环保,2020,47(1):80-83.
    [15]
    张浩浩,李胜,高宏,等.平煤十矿底板巷穿层钻孔瓦斯抽采模拟研究[J].中国安全生产科学技术,2018,14(9): 38-43.
    [16]
    FAN C, ELSWORTH D, LI S, et al. Modelling and optimization of enhanced coalbed methane recovery using CO2/N2 mixtures[J]. Fuel, 2019,253: 1114-1129.
    [17]
    ZHU W C, WEI C H, LIU J, et al. A model of coal–gas interaction under variable temperatures[J]. International Journal of Coal Geology, 2011,86(2/3): 213-221.
    [18]
    LIU T, LIN B, YANG W, et al. An integrated technology for gas control and green mining in deep mines based on ultra-thin seam mining[J]. Environmental Earth Sciences, 2017,76(6):243.
    [19]
    PAN Z, CONNELL L D. Modelling permeability for coal reservoirs:A review of analytical models and testing data[J]. International Journal of Coal Geology, 2012,92: 1-44.
    [20]
    高涵,龚选平,臧杰,等.含瓦斯煤的渗透率演化模型及其影响因素研究[J].矿业安全与环保,2019, 46(6):47-52.
    [21]
    林柏泉,刘厅,杨威.基于动态扩散的煤层多场耦合模型建立及应用[J].中国矿业大学学报,2018,47(1): 32-39.
  • Cited by

    Periodical cited type(18)

    1. 栗海滔,黄震,董肖振. 穿层钻孔水力冲孔增透与有效抽采半径综合测试方法研究. 矿业安全与环保. 2024(02): 59-66+73 . 本站查看
    2. 宁文伟. U型通风工作面瓦斯分布与治理研究. 山东煤炭科技. 2024(04): 93-98 .
    3. 杨占山. 松软低透气性煤层瓦斯抽采技术的应用研究. 能源与节能. 2024(05): 18-20+73 .
    4. 闫俊杰. 煤层钻孔机械造穴抽采瓦斯效果分析. 陕西煤炭. 2024(10): 114-118+134 .
    5. 何伟,曹文龙,王向阳,康甲甲. 深部开采煤层水力割缝卸压增透与促抽瓦斯技术研究. 陕西煤炭. 2023(01): 41-47 .
    6. 张帆,王广森,潘仁杰,宋雨祥. 定向复合钻进预抽煤层中部瓦斯的以孔代巷技术研究. 煤. 2023(02): 33-36 .
    7. 张开加,倪兴. 东兴煤矿顺层抽采钻孔分段水力冲孔技术研究. 煤炭工程. 2023(03): 73-77 .
    8. 岳刘杰,齐庆杰,关芳明,马少君,杨龙龙,陈凯铭. 深部低透气煤层高压水力割缝技术应用及效果分析. 陕西煤炭. 2023(03): 1-6 .
    9. 秦可. 不同钻孔间距对瓦斯抽采的影响研究. 粘接. 2022(05): 80-84 .
    10. 赵志国,石敬南,王代华,谷成锡. 基于WSN的煤层瓦斯压力监测系统设计. 现代电子技术. 2022(12): 89-94 .
    11. 郝从猛. 突出煤层水力冲孔卸压消突合理出煤率考察研究. 华北科技学院学报. 2022(04): 60-64 .
    12. 梁秀龙. 煤矿抽采钻孔除渣防尘装置的改进设计分析. 机械管理开发. 2022(11): 53-54 .
    13. 程士宜,李文超. 改善松软煤层抽采孔砂岩孔壁力学行为研究. 煤矿安全. 2022(10): 243-247 .
    14. 唐强. E0103工作面CO_2预裂技术数值模拟研究. 河南科技. 2021(11): 73-75 .
    15. 薛国杰. 腾晖煤业2-203综放工作面瓦斯综合治理技术实践. 煤矿现代化. 2021(06): 55-57 .
    16. 王学兵,苏保山. 厚煤层大采高工作面瓦斯综合治理技术研究. 山东煤炭科技. 2021(11): 101-104 .
    17. 赵晋翔. 低透气性煤层瓦斯抽采问题探析. 能源与节能. 2021(12): 37-38 .
    18. 秦江涛,陈玉涛. 低透气性煤层高压水力压裂—冲孔联合增透技术研究及应用. 矿业安全与环保. 2021(06): 53-57 . 本站查看

    Other cited types(4)

Catalog

    Article views (82) PDF downloads (12) Cited by(22)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return