Citation: | ZHANG Wei, ZHAO Bo, GUO Xiaoyang, DENG Cunbao, GAO Jiahui. Gas migration law of gas-bearing rock strata under the influence of repeated mining[J]. Mining Safety & Environmental Protection, 2024, 51(1): 61-69. DOI: 10.19835/j.issn.1008-4495.20220980 |
Under the influence of repeated mining, the gas endowed in the rock strata adjacent to the coal seam desorbs and gushes out, becoming one of the gas sources in the working face.In order to study the gas migration law of gas-bearing rock strata under the influence of repeated mining, the No.5 coal seam in Shaqu No.1 Coal Mine and its adjacent coal rock layers were taken as the engineering background.On the basis of measuring the basic parameters of gas in coal and rock mass, numerical simulation was used to study the range of pressure relief and antireflection of coal and rock mass under the influence of repeated mining, and the spatial distribution of the permeability of gas-bearing rock strata was obtained, then the gas migration law of gas-bearing rock strata was simulated.The research results show that the L5 limestone strata has the highest gas occurrence among the adjacent strata, and the gas content is about 14.3% of the No.5 coal seam. Repeated mining leads to increased pressure relief degree of coal and rock mass, and the pressure relief area of L5 limestone strata is distributed in the edge area of permanent coal pillar.The maximum permeability in the pressure relief area of the L5 limestone strata can reach 4.8×10 -15 m 2, which is 7.7 times of the initial permeability.The distribution of the high permeability area is consistent with the pressure relief area.The gas in L5 limestone strata is desorbed and gushed up to the working face, resulting in the gas concentration in the upper corner rising from 6.1% to 7.1%.Influenced by the roadway ventilation, the gas in L5 limestone strata mainly gathers in the back of the rock layer and the side of the return airway, which is the key area that should be paid attention to during gas extraction.
[1] |
刘厅, 赵洋, 赵柏泉. 双重卸压效应下煤体力学行为响应及对渗透率的影响规律[J]. 煤炭学报, 2022, 47(7): 2656-2667. https://www.cnki.com.cn/Article/CJFDTOTAL-MTXB202207012.htm
LIU Ting, ZHAO Yang, ZHAO Boquan. Evolution of mechanical behavior and its influence on coal permeability during dual unloading[J]. Journal of China Coal Society, 2022, 47(7): 2656-2667. https://www.cnki.com.cn/Article/CJFDTOTAL-MTXB202207012.htm
|
[2] |
张超林, 王培仲, 王恩元, 等. 我国煤与瓦斯突出机理70年发展历程与展望[J]. 煤田地质与勘探, 2023, 51(2): 59-94. https://www.cnki.com.cn/Article/CJFDTOTAL-MDKT202302005.htm
ZHANG Chaolin, WANG Peizhong, WANG Enyuan, et al. Coal and gas outburst mechanism: Research progress and prospect in China over the past 70 years[J]. Coal Geology & Exploration, 2023, 51(2): 59-94. https://www.cnki.com.cn/Article/CJFDTOTAL-MDKT202302005.htm
|
[3] |
翟景辉, 任帅, 王方田, 等. 综放开采矿压显现与瓦斯运移响应规律[J]. 采矿与岩层控制工程学报, 2022, 4(1): 51-59. https://www.cnki.com.cn/Article/CJFDTOTAL-MKKC202201006.htm
ZHAI Jinghui, REN Shuai, WANG Fangtian, et al. Response of ground pressure behavior and gas migration in fully mechanized top-coal caving mining[J]. Journal of Mining and Strata Control Engineering, 2022, 4(1): 51-59. https://www.cnki.com.cn/Article/CJFDTOTAL-MKKC202201006.htm
|
[4] |
李敏, 翟成, 贾惠侨, 等. 被保护层双重卸压特性研究[J]. 安全与环境学报, 2017, 17(3): 911-916. https://www.cnki.com.cn/Article/CJFDTOTAL-AQHJ201703022.htm
LI Min, ZHAI Cheng, JIA Huiqiao, et al. Experimental study on the rockburst of the coal pillar in the deep isolated workface[J]. Journal of Safety and Environment, 2017, 17(3): 911-916. https://www.cnki.com.cn/Article/CJFDTOTAL-AQHJ201703022.htm
|
[5] |
CHEN X, GAO J H, DENG C B, et al. Experimental study on chemical structure and wetting influence of imidazole ionic liquids on coal[J]. Fuel, 2022, 330.
|
[6] |
周银波, 黄继磊, 王思琪, 等. 下伏被保护层双重采动影响下覆岩瓦斯富集规律[J]. 工矿自动化, 2020, 46(4): 23-27. https://www.cnki.com.cn/Article/CJFDTOTAL-MKZD202004004.htm
ZHOU Yinbo, HUANG Jilei, WANG Siqi, et al. Strata gas enrichment rules under double mining influence of underlying protected seam[J]. Industry and Mine Automation, 2020, 46(4): 23-27. https://www.cnki.com.cn/Article/CJFDTOTAL-MKZD202004004.htm
|
[7] |
江丽丽, 杨增强, 翟春佳, 等. 上保护层不合理布置对被保护层应力叠加影响效应研究[J]. 矿业安全与环保, 2020, 47(2): 29-34. doi: 10.19835/j.issn.1008-4495.2020.02.006
JIANG Lili, YANG Zengqiang, ZHAI Chunjia, et al. Study on the influence of the unreasonable layout of upper protective layer on stress superposition of the protected layer[J]. Mining Safety & Environmental Protection, 2020, 47(2): 29-34. doi: 10.19835/j.issn.1008-4495.2020.02.006
|
[8] |
CAO W, LIU H, HANG Y, et al. Similarity simulation on the movement characteristics of surrounding rock and floor stress distribution for large-dip coal seam[J]. Sensors, 2022, 22(7).
|
[9] |
YE Q, WANG W, WANG G, et al. Numerical simulation on tendency mining fracture evolution characteristics of overlying strata and coal seams above working face with large inclination angle and mining depth[J]. Arabian Journal of Geosciences, 2017, 10(4).
|
[10] |
刘超, 孙宝强, 李树刚, 等. 厚煤层双重卸压采动覆岩裂隙分布特征及卸压瓦斯抽采技术[J]. 煤矿安全, 2021, 52(12): 89-96. https://www.cnki.com.cn/Article/CJFDTOTAL-MKAQ202112015.htm
LIU Chao, SUN Baoqiang, LI Shugang, et al. Distribution characteristics of fractured rock in overburden induced by double pressure relief mining of thick coal seam and pressure relief gas extraction technology[J]. Safety in Coal Mines, 2021, 52(12): 89-96. https://www.cnki.com.cn/Article/CJFDTOTAL-MKAQ202112015.htm
|
[11] |
ZHAO P, ZHUO R, LI S, et al. Research on the effect of coal seam inclination on gas migration channels at fully mechanized coal mining face[J]. Arabian Journal of Geosciences, 2019, 12(18).
|
[12] |
孙祺钰, 祝彦, 赵晓夏. 采动影响下工作面覆岩渗透率变化研究[J]. 矿业安全与环保, 2020, 47(5): 34-39. doi: 10.19835/j.issn.1008-4495.2020.05.007
SUN Qiyu, ZHU Yan, ZHAO Xiaoxia. Research on permeability change of overlying strata affected by mining in working face[J]. Mining Safety & Environmental Protection, 2020, 47(5): 34-39. doi: 10.19835/j.issn.1008-4495.2020.05.007
|
[13] |
FAN J, WANG G, LI H, et al. Studies on gas seepage characteristics in different stress zones of bottom coal in steeply inclined and extra-thick coal seams under mining action[J]. ACS OMEGA, 2021, 6(50): 34250-34262. doi: 10.1021/acsomega.1c03500
|
[14] |
焦彦锦, 朱建芳, 耿瑶, 等. 采空区覆岩"竖三带"孔隙率三维分布研究[J]. 煤矿安全, 2021, 52(11): 159-165. https://www.cnki.com.cn/Article/CJFDTOTAL-MKAQ202111027.htm
JIAO Yanjin, ZHU Jianfang, GENG Yao, et al. Study on 3D distribution of porosity of overburden "horizontal three-zones" in goaf[J]. Safety in Coal Mines, 2021, 52(11): 159-165. https://www.cnki.com.cn/Article/CJFDTOTAL-MKAQ202111027.htm
|
[15] |
聂琦苗, 牛会永, 刘轶康, 等. 深井覆岩采动冒落及孔隙率分布特征研究[J]. 煤炭技术, 2021, 40(11): 18-22. https://www.cnki.com.cn/Article/CJFDTOTAL-MTJS202111004.htm
NIE Qimiao, NIU Huiyong, LIU Yikang, et al. Research on mining caving and porosity distribution characteristics of overlying strata in deep wells[J]. Coal Technology, 2021, 40(11): 18-22. https://www.cnki.com.cn/Article/CJFDTOTAL-MTJS202111004.htm
|
[16] |
陈健, 鲁义, 于顺才, 等. 基于FLAC
3D的分层开采再生顶板裂隙控制效果分析[J]. 中国安全生产科学技术, 2022, 18(3): 112-117. https://www.cnki.com.cn/Article/CJFDTOTAL-LDBK202203017.htm
CHEN Jian, LU Yi, YU Shuncai, et al. Analysis on crack control effect of regenerated roof for slicing based on FLAC
3D[J]. Journal of Safety Science and Technology, 2022, 18(3): 112-117. https://www.cnki.com.cn/Article/CJFDTOTAL-LDBK202203017.htm
|
[17] |
陈鹏, 张浪, 邹东起. 基于"O"形圈理论的采空区三维渗透率分布研究[J]. 矿业安全与环保, 2015, 42(5): 38-41. https://www.cnki.com.cn/Article/CJFDTOTAL-ENER201505010.htm
CHEN Peng, ZHANG Lang, ZOU Dongqi. Study of three-dimensional distribution of permeability in gob based on O-shape circle theory[J]. Mining Safety & Environmental Protection, 2015, 42(5): 38-41. https://www.cnki.com.cn/Article/CJFDTOTAL-ENER201505010.htm
|
[18] |
屠世浩, 张村, 杨冠宇, 等. 采空区渗透率演化规律及卸压开采效果研究[J]. 采矿与安全工程学报, 2016, 33(4): 571-577. https://www.cnki.com.cn/Article/CJFDTOTAL-KSYL201604001.htm
TU Shihao, ZHANG Cun, YANG Guanyu, et al. Research on permeability evolution law of goaf and pressure-relief mining effect[J]. Journal of Mining & Safety Engineering, 2016, 33(4): 571-577. https://www.cnki.com.cn/Article/CJFDTOTAL-KSYL201604001.htm
|
[19] |
李大旺. 顶底板岩层透气性对煤层瓦斯抽采的影响研究[J]. 矿业安全与环保, 2021, 48(5): 28-32. doi: 10.19835/j.issn.1008-4495.2021.05.006
LI Dawang. Study on the influence of roof and floor rock permeability on gas extraction in coal seam[J]. Mining Safety & Environmental Protection, 2021, 48(5): 28-32. doi: 10.19835/j.issn.1008-4495.2021.05.006
|
[20] |
WANG D, ZHANG P, ZHANG Y, et al. Distribution characteristic and migration mechanism of toxic gases in goafs during close-distance coal seam mining: a case study of shaping coal mine[J]. ACS OMEGA, 2022, 7(8): 7403-7413. doi: 10.1021/acsomega.2c00339
|
[21] |
程志恒, 陈亮, 邹全乐, 等. 近距离煤层群煤与瓦斯高效共采技术体系研究: 以山西吕梁沙曲矿区为例[J]. 煤炭科学技术, 2021, 49(2): 122-137. https://www.cnki.com.cn/Article/CJFDTOTAL-MTKJ202102016.htm
CHENG Zhiheng, CHEN Liang, ZOU Quanle, et al. Study on high-efficiency co-mining technology system of coal and gas in contiguous seams: a case study of Shaqu Mining Area in Lüliang, Shanxi Province[J]. Coal Science and Technology, 2021, 49(2): 122-137. https://www.cnki.com.cn/Article/CJFDTOTAL-MTKJ202102016.htm
|
[22] |
柴琳, 吴世跃, 牛煜, 等. 深部煤层超临界甲烷吸附量预测研究[J]. 矿业安全与环保, 2018, 45(4): 27-31. http://www.kyaqyhb.com/cn/article/id/55d9589d-81bc-421c-8921-652033d2e066
CHAI Lin, WU Shiyue, NIU Yu, et al. Prediction of supercritical methane adsorption in deep coal seam[J]. Mining Safety & Environmental Protection, 2018, 45(4): 27-31. http://www.kyaqyhb.com/cn/article/id/55d9589d-81bc-421c-8921-652033d2e066
|
[23] |
郭小铭, 刘英锋, 李超峰. 强冲击矿压矿井综放开采覆岩破坏规律研究[J]. 矿业安全与环保, 2018, 45(3): 24-28. http://www.kyaqyhb.com/cn/article/id/4973f3b5-6ac1-4449-b627-76cce2ad6059
GUO Xiaoming, LIU Yingfeng, LI Chaofeng. Study on rule of overburden failure under strong rock burst and fully mechanized caving mining[J]. Mining Safety & Environmental Protection, 2018, 45(3): 24-28. http://www.kyaqyhb.com/cn/article/id/4973f3b5-6ac1-4449-b627-76cce2ad6059
|
[24] |
康建东. 煤柱对上保护层开采卸压消突效果的影响研究[J]. 矿业安全与环保, 2018, 45(4): 17-21. http://www.kyaqyhb.com/cn/article/id/8579778c-c10b-4a0c-b7a7-3b218ab2183e
KANG Jiandong. Study on the influence of coal pillar on the pressure relief and outburst elimination of the upper protective layer mining[J]. Mining Safety & Environmental Protection, 2018, 45(4): 17-21. http://www.kyaqyhb.com/cn/article/id/8579778c-c10b-4a0c-b7a7-3b218ab2183e
|
[25] |
张向东, 胡跃龙, 王振. 二次掘进下大跨度开切眼支护数值模拟及应用[J]. 矿业安全与环保, 2019, 46(1): 57-61. http://www.kyaqyhb.com/cn/article/id/16e02512-dde9-42c6-ba66-ebeb6f4db2ce
ZHANG Xiangdong, HU Yuelong, WANG Zhen. Research on the technology of long-span and open-cut hole support in secondary excavation[J]. Mining Safety & Environmental Protection, 2019, 46(1): 57-61. http://www.kyaqyhb.com/cn/article/id/16e02512-dde9-42c6-ba66-ebeb6f4db2ce
|
[26] |
ZHANG C, TU S, ZHANG L, et al. The numerical simulation of permeability rules in protective seam mining[J]. International Journal of Oil Gas and Coal Technology, 2016, 13(3): 243-259. doi: 10.1504/IJOGCT.2016.079268
|
[27] |
郝春生, 袁瑞甫, 郝海金, 等. 基于采动覆岩裂隙三维分布形态的地面L型抽采钻孔合理位置研究[J]. 河南理工大学学报(自然科学版), 2019, 38(6): 24-31. https://www.cnki.com.cn/Article/CJFDTOTAL-JGXB201906004.htm
HAO Chunsheng, YUAN Ruifu, HAO Jinhai, et al. Study on the proper position of gas drainage boreholes of L type based on the overlying fracture distribution in three dimensions induced by mining[J]. Journal of Henan Polytechnic University(Natural Science), 2019, 38(6): 24-31. https://www.cnki.com.cn/Article/CJFDTOTAL-JGXB201906004.htm
|
1. |
赵泓超,王秦生. 高突矿井未开采保护层区域瓦斯治理研究. 矿业安全与环保. 2024(03): 56-64 .
![]() |