Citation: | GUO Tianning, ZENG Qiang. Numerical simulation of coal oxidation reaction in coal oxidation furnace based on COMSOL[J]. Mining Safety & Environmental Protection, 2023, 50(1): 9-13. DOI: 10.19835/j.issn.1008-4495.2023.01.002 |
In order to explore the distribution law of temperature, oxidation products and reactants in the process of coal combustion. In this paper, the model of coal oxidation furnace was established by COMSOL 5.5 numerical simulation software. Based on the coal attribute data of Zhundong Coal Mine in Xinjiang Province, the distribution characteristics of temperature, O 2 and concentration of oxidation products (CO and CO 2) in furnace under natural heating and heating and different pressure difference conditions were simulated. The results show that with the increase of pressure difference, the temperature in furnace and the concentration of oxidation products decrease, and the position of high temperature region at the end of reaction increases. Under the same pressure difference, the concentration of oxidation products increases with the increase of the axial position of the monitoring point, and the temperature of the furnace center is higher. In the radial direction, the concentration of oxidation products is positively correlated with the temperature at the corresponding location. Heating for 8 h can significantly improve the reaction rate.
[1] |
邓军, 白祖锦, 肖旸, 等. 煤自燃灾害防治技术现状与挑战[J]. 煤矿安全, 2020, 51(10): 118-125. https://www.cnki.com.cn/Article/CJFDTOTAL-MKAQ202010018.htm
|
[2] |
郭军, 蔡国斌, 金彦, 等. 煤自燃火灾防治技术研究进展及趋势[J]. 煤矿安全, 2020, 51(11): 180-184. https://www.cnki.com.cn/Article/CJFDTOTAL-MKAQ202011038.htm
|
[3] |
包兴东. 新疆第五次煤田火区普查成果分析[J]. 能源与环保, 2021, 43(2): 1-4. https://www.cnki.com.cn/Article/CJFDTOTAL-ZZMT202102002.htm
|
[4] |
侯欣然, 乔建, 王福生. 煤炭自燃机理的研究进展[J]. 煤炭与化工, 2018, 41(6): 104-107. https://www.cnki.com.cn/Article/CJFDTOTAL-HHGZ201806032.htm
|
[5] |
邓军, 李贝, 王凯, 等. 我国煤火灾害防治技术研究现状及展望[J]. 煤炭科学技术, 2016, 44(10): 1-7. https://www.cnki.com.cn/Article/CJFDTOTAL-MTKJ201610001.htm
|
[6] |
王伟. 煤田火灾探测与治理技术现状及发展趋势[J]. 煤矿安全, 2020, 51(11): 206-209. https://www.cnki.com.cn/Article/CJFDTOTAL-MKAQ202011043.htm
|
[7] |
文虎, 王文, 程小蛟, 等. 不同抽采条件对采空区煤自燃"三带"的影响研究[J]. 矿业安全与环保, 2020, 47(6): 1-7. https://ener.cbpt.cnki.net/WKB/WebPublication/paperDigest.aspx?paperID=3960fa9a-fa46-479e-9050-4e95e2fff6ab
|
[8] |
肖旸, 庞攀, 黄传亮, 等. 炭化粉自燃氧化规律研究[J]. 矿业安全与环保, 2020, 47(6): 25-31. https://ener.cbpt.cnki.net/WKB/WebPublication/paperDigest.aspx?paperID=ac1282a7-9553-4fb9-bf28-4379de426206
|
[9] |
王德明, 辛海会, 戚绪尧, 等. 煤自燃中的各种基元反应及相互关系: 煤氧化动力学理论及应用[J]. 煤炭学报, 2014, 39(8): 1667-1674. https://www.cnki.com.cn/Article/CJFDTOTAL-MTXB201408039.htm
|
[10] |
SMITH M A, GLASSER D. Spontaneous combustion of carbonaceous stockpiles. Part Ⅰ: the relative importance of various intrinsic coal properties and properties of the reaction system[J]. Fuel, 2004, 84(9): 1151-1160.
|
[11] |
BHOI S, BANERJEE T, MOHANTY K. Molecular dynamic simulation of spontaneous combustion and pyrolysis of brown coal using reaxff[J]. Fuel, 2014, 136: 326-333.
|
[12] |
王晓东. 基于热动力学分析煤自燃特性研究[D]. 天津: 天津理工大学, 2020.
|
[13] |
周清清. 煤自燃倾向性及阻化技术的实验研究[D]. 杭州: 浙江大学, 2018.
|
[14] |
肖旸, 吕慧菲, 邓军, 等. 煤自燃阻化机理及其应用技术的研究进展[J]. 安全与环境工程, 2017, 24(1): 176-182. https://www.cnki.com.cn/Article/CJFDTOTAL-KTAQ201701030.htm
|
[15] |
SZURGACZ D, TUTAK M, BRODNY J, et al. The method of combating coal spontaneous combustion hazard in goafs—a case study[J]. Energies, 2020, 13(17): 4538.
|
[16] |
光布加甫·珊珠, 曾强, 聂静, 等. 煤加热氧化综合实验系统的设计与实现[J]. 矿业安全与环保, 2016, 43(3): 29-32. https://ener.cbpt.cnki.net/WKB/WebPublication/paperDigest.aspx?paperID=1f9ca6ce-cc77-4b1c-8749-60cdddcfd39a
|
[17] |
李宗翔, 刘宇, 吴邦大, 等. 基于封闭耗氧实验的窒熄带氧临界体积分数研究[J]. 煤炭学报, 2017, 42(7): 1776- 1781. https://www.cnki.com.cn/Article/CJFDTOTAL-MTXB201707017.htm
|
[18] |
李宗翔, 胡东杰, 刘宇, 等. 基于封闭耗氧试验的采空区自燃危险性研究[J]. 安全与环境学报, 2021, 21(5): 2030-2036. https://www.cnki.com.cn/Article/CJFDTOTAL-AQHJ202105022.htm
|
[19] |
SALVI D, BOLDOR D, AITA G M, et al. COMSOL Multiphysics model for continuous flow microwave heating of liquids[J]. Journal of Food Engineering, 2011, 104(3): 422-429.
|
[20] |
VAJDI M, MOGHANLOU F S, SHARIFIANJAZI F, et al. A review on the Comsol Multiphysics studies of heat transfer in advanced ceramics[J]. Journal of Composites and Compounds, 2020, 2(2): 35-43.
|
[21] |
SAXENA P, GORJI N E. COMSOL simulation of heat distribution in perovskite solar cells: coupled optical-electrical-thermal 3-D analysis[J]. IEEE Journal of Photovoltaics, 2019, 9(6): 1693-1698.
|