• Chinese Core Periodicals
  • Chinese Core Journals of Science and Technology
  • RCCSE Chinese Core Academic Journals
  • Netherlands Abstracts and Citations Database(Scopus)
  • Directory of Open Access Journals(DOAJ)
  • Chemical abstracts(CA)
  • Abstract Journal(РЖ,AJ)
  • Japan Science and Technology Agency(JST)
Advance Search
REN Yanfang. Influence of surface mountain load on mining pressure of shallow buried deep working face[J]. Mining Safety & Environmental Protection, 2020, 47(4): 77-81,87. DOI: 10.19835/j.issn.1008-4495.2020.04.015
Citation: REN Yanfang. Influence of surface mountain load on mining pressure of shallow buried deep working face[J]. Mining Safety & Environmental Protection, 2020, 47(4): 77-81,87. DOI: 10.19835/j.issn.1008-4495.2020.04.015

Influence of surface mountain load on mining pressure of shallow buried deep working face

More Information
  • Received Date: February 19, 2020
  • Revised Date: July 05, 2020
  • Available Online: September 16, 2022
  • In order to obtain the influencing law of mountain load on shallow buried deep working face, based on the measured data of in-situ ground pressure and the numerical simulation method, the loading mechanism of surface mountain on the working surface and its influence on mining pressure appearance were studied. The results show that there is a positive correlation between the mountain load and the mining pressure appearance in the working face, the greater the mountain load, the stronger the mining pressure appearance in the working face; influenced by the bearing and breaking characteristics of the bedrock layer, there is a lag distance between the load layer and the working face mining pressure, which is similar to the periodic breaking distance of the roof; the impact range of mountain area is much larger than its vertical range, when the working face enters and leaves the influence range of the surface mountain, the superimposed influence of the mountain load on both sides will cause the working face pressure to increase. Therefore, when the shallow buried deep working face enters and leaves the influence area of the surface mountain area, the support strength of the working face should be ensured and the working face should maintain a reasonable and rapid advancing speed.
  • [1]
    任艳芳.浅埋煤层长壁开采顶板致灾机理及其控制研究[D].北京:煤炭科学研究总院,2015.
    [2]
    许家林,朱卫兵,鞠金峰.浅埋煤层开采压架类型[J].煤炭学报,2014,39(8):1625-1634.
    [3]
    许家林,朱卫兵,王晓振,等.沟谷地形对浅埋煤层开采矿压显现的影响机理[J].煤炭学报,2012,37(2):179-185.
    [4]
    张志强.沟谷地形对浅埋煤层工作面动载矿压的影响规律研究[D].徐州:中国矿业大学,2011.
    [5]
    赵兵朝,路晓晓,贺卫中,等.陕北黄土沟壑区煤炭开采衍生灾害评价方法[J].矿业安全与环保, 2019, 46(1):82-86.
    [6]
    赵杰,刘长友,李建伟.沟谷区域浅埋煤层上坡段开采覆岩破断及工作面矿压显现特征[J].煤炭科学技术,2017,45(1):34-40.
    [7]
    李建伟,刘长友,赵杰,等.沟谷区域浅埋煤层采动矿压发生机理及控制研究[J].煤炭科学技术,2018,46(9):104-110.
    [8]
    陶志勇,任艳芳.薄基岩浅埋深综采工作面矿压规律实测分析[J].煤矿开采,2009,14(3):93-94.
    [9]
    王旭锋,张东升,卢鑫,等.浅埋煤层沙土质冲沟坡体下开采矿压显现特征[J].煤炭科学技术,2010,38(6):18-22.
    [10]
    郑文棠, 徐卫亚, 童富果, 等.复杂边坡三维地质可视化和数值模型构建[J].岩石力学与工程学报,2007,26(8):1633-1644.
    [11]
    黄飞,黄滚,杨涛,等.龙滩矿井采煤工作面诱发开采沉陷的动态变化特征[J].矿业安全与环保, 2019, 46(2):103-106.
    [12]
    任艳芳,宁宇,齐庆新.浅埋深长壁工作面覆岩破断特征相似模拟[J].煤炭学报,2013,38(1):61-66.
    [13]
    刘江,任艳芳,齐庆新.长壁工作面顶板周期下沉量的理论分析与实测研究[J].辽宁工程技术大学学报(自然科学版),2010,29(6):1046-1049.
    [14]
    文志杰,赵晓东,尹立明, 等.大采高顶板控制模型及支架合理承载研究[J].采矿与安全工程学报,2010,27(2):255-258.
    [15]
    徐树媛, 张永波, 时红, 等.厚黄土覆盖区煤炭开采对松散含水层影响的相似模拟研究[J].矿业安全与环保, 2019, 46(3):1-5.
    [16]
    李锐,贾宝山,皮子坤.7.0 m大采高综采工作面临近回撤阶段的冒顶压架机理分析及防治措施[J].矿业安全与环保, 2018, 45(2):84-89.
    [17]
    马骥,王胜,邓磊.高家堡煤矿采煤工作面矿压显现规律研究[J].矿业安全与环保, 2018, 45(3):67-71.
    [18]
    任艳芳,宁宇,徐刚,等.浅埋深工作面支架与顶板的动态相互作用研究[J].煤炭学报,2016,41(8):1905-1911.
    [19]
    范钢伟,张东升,马立强.神东矿区浅埋煤层开采覆岩移动与裂隙分布特征[J].中国矿业大学学报,2011,40(2):196-201.
    [20]
    王晓振,许家林,朱卫兵,等.浅埋综采面高速推进对周期来压特征的影响[J].中国矿业大学学报,2012,41(3):349-354.
  • Related Articles

    [1]ZHANG Lei. Development of mine transient electromagnetic instrument based on constant large current emission and bipolar high speed acquisition and reception[J]. Mining Safety & Environmental Protection, 2021, 48(6): 104-107. DOI: 10.19835/j.issn.1008-4495.2021.06.019
    [2]WEN Hu, WANG Wen, CHENG Xiaojiao, JIA Yongfeng, CHENG Bangkai, CHENG Ming, HU Wei. Study on the effect of different extraction conditions on "three zones" of coal spontaneous combustion in goaf[J]. Mining Safety & Environmental Protection, 2020, 47(6): 1-7. DOI: 10.19835/j.issn.1008-4495.2020.06.001
    [3]YANG Junzhe, ZHENG Kaige, ZHAO Jizhan, LI Yanjun, DAI Nan, YANG Huan. Research on fracturing treatment technology of concentrated stress disaster by the overlying coal pillar in close distance shallow seam[J]. Mining Safety & Environmental Protection, 2020, 47(4): 82-87. DOI: 10.19835/j.issn.1008-4495.2020.04.016
    [4]JIANG Lili, YANG Zengqiang, ZHAI Chunjia, LI Changhao. Study on the influence of the unreasonable layout of upper protective layer on stress superposition of the protected layer[J]. Mining Safety & Environmental Protection, 2020, 47(2): 29-34. DOI: 10.19835/j.issn.1008-4495.2020.02.006
    [5]QIU Nianguang. Numerical Simulation and Application of GPR in Advance Detection of Coal Tunneling[J]. Mining Safety & Environmental Protection, 2019, 46(5): 42-46.
    [6]HUI Shuanglin. Influence Analysis of Lateral Wind Speed and Spray Pressure on the Characteristic of Dust Removal Spray[J]. Mining Safety & Environmental Protection, 2019, 46(2): 42-46.
    [7]ZHOU Chuanyun, HUANG Qiang, ZHANG Mingming, ZHANG Yuanzheng. The Application of Ultrasonic Time Difference Method in the Measurement of Wind Speed in Coal Mine[J]. Mining Safety & Environmental Protection, 2018, 45(3): 42-45,50.
    [8]CHANG Hailei, LIU Yanqing, ZHANG Lang, WANG Dong, ZHANG Shulin, LI Wei. Study on Gas Emission and Migration Law of Residual Coal in Gob and Coal Wall aboveSupport in Fully Mechanized Caving Face with U+I-shape Ventilation System[J]. Mining Safety & Environmental Protection, 2017, 44(2): 39-44.
    [9]ZHANG Chun, LI Jiming, CHENG Shiyu, GAO Xinhao, YAO Lihong. Determination of Reasonable Advancing Speed of Fully Mechanized Top-coal Caving Face Based on Prevention and Control of Residual Coal Spontaneous Combustion[J]. Mining Safety & Environmental Protection, 2017, 44(1): 98-101,105.
    [10]CHENG Bo, MA Daihui, GAO Yue. Correlation of Ash Content, Volatile Matter and Porosity of Coal and Their Impact on Initial Speed of Methane Diffusion[J]. Mining Safety & Environmental Protection, 2017, 44(1): 12-17.
  • Cited by

    Periodical cited type(4)

    1. 杨玉顺,张东明,张继华,何伟珺. 交替加卸载条件下原煤的变形及渗透特性研究. 煤矿安全. 2022(10): 228-234+242 .
    2. 柴昊昊. 含瓦斯煤渗透性影响分析. 山西焦煤科技. 2021(01): 43-46 .
    3. 徐超,秦亮亮,李晓敏,杨港,孙浩石. 加卸载煤体损伤-渗透特性影响因素实验研究. 矿业科学学报. 2021(03): 280-289 .
    4. 张宏学. 煤系气储层渗透率解析模型研究进展. 矿业安全与环保. 2021(04): 92-98 . 本站查看

    Other cited types(4)

Catalog

    Article views (37) PDF downloads (6) Cited by(8)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return