Study on Prediction Model of Rockburst Proneness Based on Belief Network
-
摘要: 为了在岩爆预测精确度和工程实用性之间寻找平衡点,提出基于信念网络的岩爆等级预测模型,综合考虑岩爆的发生机理和目前已有的判别依据,选取最大切向应力与岩石单轴抗压强度比值等因素作为评价指标。在专家论证的样本数据集的基础上,采用梯度下降法对输入不完备信息进行预测优化;应用NETICA软件对已有的样本信息进行统计训练后获得节点间的概率分布,分析了各判据节点与目标节点的敏感度。利用该预测模型对工程实例进行分析预测,验证了模型的可行性,为岩爆等级预测提供一种新的方法和途径。Abstract: In order to balance the prediction accuracy of rockburst and engineering practicability, a prediction model of rockburst grade based on belief network was proposed. The mechanism of rockburst and the existing discrimination criterion were considered comprehensively, factors such as the maximum tangential stress and the ratio of uniaxial compressive strength of rock were chosen as the evaluation indexes. Based on the sample data set of expert argumentation, the input incomplete information was forecasted and optimized by the gradient descent method. By using the NETICA software, the existing sample information was statistically trained, and the probability distribution among nodes was obtained, the sensitivity of each criterion node to the target node was analyzed. Using the prediction model to analyze and forecast engineering project, which verifies the feasibility of the model providing a new method for rockburst grade prediction.
-
-
[1] 张子健, 纪洪广, 张月征, 等.基于声发射试验与线弹性能判据的玲南金矿岩爆研究[J].岩石力学与工程学报, 2015, 34(S1):3249-3255. [2] 黎昕, 周宗红, 金小川, 等.白云岩单轴压缩试验声发射特性研究[J]. 中国安全生产科学技术, 2013, 9(10):10-14. [3] 葛启发, 冯夏庭.基于AdaBoost组合学习方法的岩爆分类预测研究[J].岩土力学, 2008, 29(4):943-948. [4] 贾义鹏, 吕庆, 尚岳全, 等.基于证据理论的岩爆预测[J]. 岩土工程学报, 2014, 36(6):1079-1086. [5] 靳颜宁, 李夕兵, 刘彭金, 等.基于改进的未确知聚类模型的岩爆倾向性预测[J].安全与环境学报, 2017, 17(1):12-16. [6] 王元汉, 李卧东, 李启光, 等.岩爆预测的模糊数学综合评判方法[J]. 岩石力学与工程学报, 1998, 17(5):15-23. [7] 牛少卿, 杨双锁, 李义, 等.岩体结构类型对深井巷道围岩的稳定性影响研究[J]. 矿业安全与环保, 2014, 41(2):24-27. [8] 尚彦军, 张镜剑, 傅冰骏.应变型岩爆三要素分析及岩爆势表达[J]. 岩石力学与工程学报, 2013, 32(8):1520-1527. [9] JOAN VILA-FRANCEÉS, JUAN SANCHÍS, EMILIO SORIA-OLIVAS, et al.Expert system for predicting unstable angina based on Bayesian networks[J].Expert Systems with Applications, 2013, 40(12):5004-5010.
[10] 王开铭, 赵峰, 曹茜.基于动态贝叶斯网络的高速铁路牵引变电所可靠性分析[J].中国安全生产科学技术, 2016, 12(6):128-135. [11] CHEN Jing, FU Jingqi. Fire Alarm System Based on Multi-Sensor Bayes Network[J]. Procedia Engineering, 2012, 29: 2551-2555.
[12] ELENA PÉREZ-MIÑANA.Improving ecosystem services modelling:Insights from a Bayesian network tools review[J].Environmental Modelling & Software, 2016, 85:184-201.
[13] 陈静, 蒋正凯, 付敬奇.基于Netica的自学习贝叶斯网络的构建[J]. 电子测量与仪器学报, 2016, 30(11):1687-1693. [14] ZHOU Jian, LI Xibing, SHI Xiuzhi. Long-term prediction model of rockburst in underground openings using heuristic algorithms and support vector machines [J]. Safety Science, 2012, 50(4):629-644.
[15] LOOZEN G, OZCELIK O, BOON N, et al. Inter-bacterial correlations in subgingival biofilms: a large-scale survey[J]. Journal of Clinical Periodontology, 2014, 41(1):1-10.
[16] ZHANG J J, FU B J, LI Z K, et al. Criterion and classification for strain mode rockbursts based on five-factor comprehensive method[C]// Harmonising Rock Engineering and the Environment,2011.
[17] 贾哲强, 张茹, 张艳飞, 等.猴子岩水电站地下厂房岩爆综合预测研究[J]. 岩土工程学报, 2016, 38(S2):110-116. [18] 沈宇, 王祺.基于大数据的煤矿安全监管联网平台设计与实现[J]. 矿业安全与环保, 2016, 43(6):21-24. -
期刊类型引用(2)
1. 吴菡,郭永刚,何军杰,苏立彬. 基于GWO-SVM岩爆分级预测模型. 路基工程. 2023(01): 49-54 . 百度学术
2. 吴菡,郭永刚,何军杰,苏立彬. 基于主成分和改进支持向量机的岩爆倾向性预测. 工业建筑. 2023(10): 119-125 . 百度学术
其他类型引用(2)
计量
- 文章访问数: 26
- HTML全文浏览量: 0
- PDF下载量: 6
- 被引次数: 4