• 中文核心期刊
  • 中国科技核心期刊
  • RCCSE中国核心学术期刊
  • Scopus, DOAJ, CA, AJ, JST收录期刊
高级检索

CO2在煤层中的渗流特性试验

徐佳俊, 陈宇龙, 蒋成荣, 刘昌庚, 曾成华

徐佳俊, 陈宇龙, 蒋成荣, 刘昌庚, 曾成华. CO2在煤层中的渗流特性试验[J]. 矿业安全与环保, 2017, 44(4): 10-13.
引用本文: 徐佳俊, 陈宇龙, 蒋成荣, 刘昌庚, 曾成华. CO2在煤层中的渗流特性试验[J]. 矿业安全与环保, 2017, 44(4): 10-13.
XU Jiajun, CHEN Yulong, JIANG Chengrong, LIU Changgeng, ZENG Chenghua. Test on Carbon Dioxide Permeability in Coal Seam[J]. Mining Safety & Environmental Protection, 2017, 44(4): 10-13.
Citation: XU Jiajun, CHEN Yulong, JIANG Chengrong, LIU Changgeng, ZENG Chenghua. Test on Carbon Dioxide Permeability in Coal Seam[J]. Mining Safety & Environmental Protection, 2017, 44(4): 10-13.

CO2在煤层中的渗流特性试验

基金项目: 

科技部重点国际合作项目(2013DFA21720)

详细信息
    作者简介:

    徐佳俊(1990-),男,湖北鄂州人,硕士,助教,主要从事采矿工程专业的教学与研究工作。E-mail:20122002022@cqu.edu.cn

  • 中图分类号: TD713

Test on Carbon Dioxide Permeability in Coal Seam

  • 摘要: 利用含瓦斯煤热流固耦合三轴伺服渗流装置,开展了不同压力条件下CO2气体在煤层中的渗流特性试验,并探讨了煤岩渗透速率对应力变化响应的敏感性。研究结果表明,在相同轴压不同围压条件下,随着孔隙压力的增大,CO2渗透速率增大;围压越大,CO2渗透速率越小;在相同围压不同轴压条件下,随着轴压的增大,CO2渗透速率随之减小。孔隙压力越大,应力敏感性系数负向增大,煤样对应力的敏感性越好。在不同轴压与围压条件下,随着应力的升高,应力敏感性系数逐渐降低,即应力越高,煤样渗透速率对应力的敏感性越差。
    Abstract: With the triaxial servo-controlled seepage equipment for thermo-fluid-solid coupling of gas-containing coal, permeability tests of carbon dioxide in the coal seam under the conditions of different pressures were conducted and the sensitivity of the coal-rock permeability to the stress change response was discussed. The research results showed that the infiltration rate of carbon dioxide increased with the increase of the pore pressure under the conditions of same confining pressure and different axial pressure; the larger the confining pressure, the smaller the permeability of carbon dioxide; under the conditions of same confining pressure and different axial pressure, the permeability of carbon dioxide decreased with the increase of the axial pressure. When the pore pressure became larger, the sensitivity coefficient of the stress increased negatively, the senitivity of coal sample to the stress was better. Under the conditions of different axial pressure and confining pressure, the sensitivity coefficiet of the stress gradually decreased with the increase of stress, the higher the stress, the worse the sensitivity of coal sample permeability to the stress.
  • [1]

    SIRIWARDANE H, HALKASMAA I, MCLENDON R, et al. Influence of carbon dioxide on coal permeability determined by pressure transient methods[J]. International Journal of Coal Geology, 2009, 77(1):109-118.

    [2]

    WILSON T H, WELLS A W, DIEHL J R, et al. Ground-penetrating radar survey and tracer observations at the West Pearl Queen carbon sequestration pilot site, New Mexico[J]. The Leading Edge, 2005, 24(7):718-722.

    [3]

    GALE J, CHRISTENSEN N P, CUTLER A, et al. Demonstrating the potential for geological storage of CO2:the Sleipner and GESTCO projects[J]. Environmental Geosciences, 2001, 8(3):160-165.

    [4]

    WEISHAUPTOVÁ Z, PŔIBYL O,SKOROVÝÁ I, et al. Effect of bituminous coal properties on carbon dioxide and methane high pressure sorption[J].Fuel, 2015, 139:115-124.

    [5]

    OZDEMIR E. Role of pH on CO2 sequestration in coal seams[J]. Fuel, 2016, 172:130-138.

    [6]

    STAUFFER P H, VISWANATHAN H S, PAWAR R J, et al. A system model for geologic sequestration of carbon dioxide[J]. Environmental science&technology, 2008, 43(3):565-570.

    [7]

    OZDEMIR E, SCHROEDER K. Effect of moisture on adsorption isotherms and adsorption capacities of CO2 on coals[J]. Energy&Fuels, 2009, 23(5):2821-2831.

    [8]

    MASOUDIAN M S. Multiphysics of carbon dioxide sequestration in coalbeds:A review with a focus on geomechanical characteristics of coal[J]. Journal of Rock Mechanics and Geotechnical Engineering, 2016, 8(1):93-112.

    [9]

    TANASE D, SASAKI T, YOSHII T, et al. Tomakomai CCS demonstration project in Japan[J]. Energy Procedia, 2013, 37:6571-6578.

    [10]

    TANAKA Y, ABE M, SAWADA Y, et al. Tomakomai CCS Demonstration Project in Japan, 2014 Update[J]. Energy Procedia, 2014, 63:6111-6119.

    [11]

    YAMANOUCHI Y, HIGASHINAKA M, YOSHII T, et al. Study of geological storage for a candidate CCS demonstration project in Tomakomai, Hokkaido, Japan[J]. Energy Procedia, 2011, 4:5677-5684.

    [12] 孙东玲,曹偈,熊云威,等.突出过程中煤-瓦斯两相流运移规律的实验研究[J].矿业安全与环保,2017, 44(2):26-30.
    [13] 周东平,沈大富,余模华,等.地应力对瓦斯渗流特性影响的试验研究[J].矿业安全与环保, 2012, 39(S1):6-8.
    [14]

    BURRUSS R C. CO2 adsorption in coal seams as a function of rank and composition:a new task in USGS research on geologic sequestration of CO2[C]//Proceedings Coal-Seq II, Washington, DC, USA, May, 2003:6-7.

    [15] 李小春,袁维,白冰. CO2地质封存力学问题的数值模拟方法综述[J].岩土力学, 2016, 37(6):1762-1772.
    [16] 尹光志,王登科,张东明,等.两种含瓦斯煤样变形特性与抗压强度的实验分析[J].岩石力学与工程学报, 2009, 28(2):410-417.
计量
  • 文章访问数:  26
  • HTML全文浏览量:  0
  • PDF下载量:  3
  • 被引次数: 0
出版历程
  • 收稿日期:  2017-03-06
  • 修回日期:  2017-06-15
  • 网络出版日期:  2022-09-16

目录

    /

    返回文章
    返回