Effect of Coal Particle Size on Pore Structure Characteristic and Gas Adsorption Characteristic
-
摘要: 为了研究不同粒度条件下型煤孔隙结构特征、瓦斯吸附特性规律及其相关关系,选取新疆矿井中煤阶煤样,制取4种粒度的型煤煤样,通过核磁共振(NMR)分析实验和高压容量法瓦斯等温吸附实验,测定不同粒度型煤的弛豫时间T2谱和瓦斯吸附等温线。研究结果表明:不同粒度型煤的弛豫时间T2谱均表现出微孔、中大孔2个峰,且弛豫时间主要集中在1.0~100.0 ms;中大孔和总孔谱峰面积与型煤粒度呈负相关关系,微孔谱峰面积与粒度呈正相关关系;在相同吸附条件下,型煤平均粒度越小,吸附瓦斯总量越大,瓦斯吸附常数a、b值及瓦斯吸附饱和度X均与粒度大小呈负相关关系;随着微孔谱峰面积的增加,瓦斯的吸附速率增加,而瓦斯吸附能力在一定范围内增大,达到一定值后趋于平缓。Abstract: In order to study the pore structure characteristics and gas adsorption characteristics of coal briquettes as well as their correlations under different particle sizes, the middle rank coal samples of Xinjiang Mine were selected to prepare coal briquette samples of four sizes. The samples were tested by NMR and high pressure gas isothermal adsorption capacity, to determine the T2 spectrum and gas adsorption isotherm of different particle sizes. The results show that the T2 spectrum signals of different particle sizes show two peaks of micropores and mesopores, the relaxation time is mainly concentrated from 1.0 ms to 100.0 ms; the peak area of medium and large pores is negatively correlated with the particle size, the peak area of micropores is positively correlated with the particle size; under the same adsorption conditions, the smaller the average particle size of briquette is, the larger the total amount of adsorbed gas is, and the gas adsorption constants a and b and the gas adsorption saturation X are negatively correlated with the particle size; as the peak area of micropores increases, the adsorption rate of gas increases, and the gas adsorption capacity increases within a certain range, then tends to be gentle after reaching a certain value.
-
Keywords:
- briquette /
- particle size /
- pore /
- NMR /
- isothermal adsorption
-
-
[1] 王振.突出煤体的瓦斯解吸特征及其影响因素分析[J].矿业安全与环保, 2017, 44(1):102-105. [2] 孙东玲, 曹偈, 熊云威, 等.突出过程中煤—瓦斯两相流运移规律的实验研究[J].矿业安全与环保, 2017, 44(2):26-30. [3] 聂百胜, 杨涛, 李祥春, 等.煤粒瓦斯解吸扩散规律实验[J]. 中国矿业大学学报, 2013, 42(6):975-981. [4] 李树刚, 安朝峰, 林海飞, 等.多因素影响下煤层吸附甲烷特性试验研究[J].煤炭科学技术, 2014, 42(6):40-44. [5] 张天军, 许鸿杰, 李树刚, 等.粒径大小对煤吸附甲烷的影响[J].湖南科技大学学报(自然科学版), 2009, 24(1):9-12. [6] REZAEE R, ZOU J.Effect of particle size on high-pressure methane adsorption of coal[J]. Petroleum Research, 2016(1):53-58.
[7] 梁冰, 贾立锋, 孙维吉, 等.粒状煤和块状煤等温吸附CH4试验研究[J].中国安全生产科学技术, 2017, 13(3):53-57. [8] 冯艳艳, 杨文, 储伟.Coalbed methane adsorption and desorption characteristics related to coal particle size[J].Chinese Physics B, 2016, 25(6):542-551. [9] 李一波, 郑万成, 王凤双.煤样粒径对煤吸附常数及瓦斯放散初速度的影响[J].煤矿安全, 2013, 44(1):5-8. [10] 大冢一雄, 邹忠有.煤层瓦斯渗透性的研究——粉煤成型煤样的渗透率[J].煤矿安全, 1982(11):44-51. [11] 许江, 陆漆, 吴鑫, 等.不同颗粒粒径下型煤孔隙及发育程度分形特征[J].重庆大学学报, 2011, 34(9):81-89. [12] SING K S W. Characterization of porous materials: past, present and future[J].Colloids & Surfaces A Physicochemical & Engineering Aspects, 2004, 241(1):3-7.
[13] 姚艳斌, 刘大锰, 黄文辉, 等.两淮煤田煤储层孔—裂隙系统与煤层气产出性能研究[J].煤炭学报, 2006, 31(2): 163-168. [14] 林海飞, 蔚文斌, 李树刚, 等.低阶煤孔隙结构对瓦斯吸附特性影响的试验研究[J].煤炭科学技术, 2016, 44(6):127-133. [15] 姚艳斌, 刘大锰.煤储层精细定量表征与综合评价模型[M]. 北京:地质出版社, 2013. [16] TIMUR A. Pulsed nuclear magnetic resonance studies of porosity, movable fluid, and permeability of sandstones[J]. Journal of Petroleum Technology, 1969, 21(6):775-786.
[17] KENYON W E. Nuclear magnetic resonance as petrophysical measurement[J]. International Journal of Radiation Applications & Instrumentation.part E.nuclear Geophysics, 1992, 6(2):153-171.
[18] 龚国波, 孙伯勤, 刘买利, 等.岩心孔隙介质中流体的核磁共振弛豫[J].波谱学杂志, 2006, 23(3):379-395. [19] 姚艳斌, 刘大锰, 蔡益栋, 等.基于NMR和X-CT的煤的孔裂隙精细定量表征[J].中国科学:地球科学, 2010, 41(11):1598-1607. [20] 白松涛, 程道解, 万金彬, 等.砂岩岩石核磁共振T2谱定量表征[J].石油学报, 2016, 37(3):382-391. [21] MAZUMDER S, HEMERT P V, BUSCH A, et al. Flue gas and pure CO2 sorption properties of coal: A comparative study[J]. International Journal of Coal Geology, 2006, 67(4):267-279.
-
期刊类型引用(12)
1. 廖鹏,段中川. 褐煤粒径对电厂烟气吸附特性的影响研究. 兰州石化职业技术大学学报. 2025(01): 11-16 . 百度学术
2. 林海飞,季鹏飞,孔祥国,李树刚,陈晨,杨送瑞. 三轴应力下原煤吸附CH_4/N_2变形时空特性. 中国矿业大学学报. 2023(02): 314-328 . 百度学术
3. 杨三萍,刘鹏珍,卢卫永. 不同黏结剂掺量条件下型煤试样三轴压缩试验研究. 采矿与岩层控制工程学报. 2023(02): 46-54 . 百度学术
4. 成小雨,程成,陈龙,赵刚. “截割-放落”煤体瓦斯解吸粒度效应及动态预测模型. 煤炭技术. 2023(04): 103-107 . 百度学术
5. 严敏,魏嘉宁,李树刚,林海飞,张坤尹,岳敏,范奕汝. 多因素影响表面活性剂喷淋煤体抑制瓦斯解吸实验研究. 煤矿安全. 2023(05): 140-152 . 百度学术
6. 张辰,马晓敏,樊玉萍,董宪姝,陈茹霞. 基于正交设计的煤泥压滤过程影响因素研究. 洁净煤技术. 2023(S2): 654-660 . 百度学术
7. 马兴莹,龚选平,成小雨,程成,李德波. 不同粒径混合煤样瓦斯解吸动力特性研究. 工矿自动化. 2023(08): 142-147 . 百度学术
8. 成小雨,龚选平,尉瑞,高涵,赵刚. 考虑煤体粒度的落煤瓦斯涌出预测模型研究. 中国安全生产科学技术. 2022(07): 61-67 . 百度学术
9. 秦钰佳,唐鑫,程龙飞,周廷强,向磊,郭森. 基于分形理论的页岩纳米孔隙粒度效应探究. 断块油气田. 2022(04): 520-526 . 百度学术
10. 李树刚,秦雪燕,白杨,龙航,岳敏,严敏. 煤吸附瓦斯影响因素的正交设计实验研究. 矿业安全与环保. 2022(04): 72-79 . 本站查看
11. 孙元田,李桂臣,常庆粮,李菁华,杨森. 基于智能反演的等效型煤构建方法、原理与技术. 采矿与安全工程学报. 2022(06): 1210-1217 . 百度学术
12. 宋亚伟,杨胜强,杨锴. 长期浸水风干煤瓦斯吸附解吸规律研究. 矿业安全与环保. 2020(05): 1-6 . 本站查看
其他类型引用(22)
计量
- 文章访问数: 27
- HTML全文浏览量: 0
- PDF下载量: 6
- 被引次数: 34