• 中文核心期刊
  • 中国科技核心期刊
  • RCCSE中国核心学术期刊
  • Scopus, DOAJ, CA, AJ, JST收录期刊
高级检索

采煤工作面图像超分辨率技术研究

Research on image super-resolution technology of coal mining face

  • 摘要: 受煤矿井下不均匀光照及煤尘、水雾等因素影响,井下采煤工作面图像采集往往存在分辨率低、细节缺失、纹理清晰度差等问题,给工作面远程监控、机器视觉等技术的应用带来诸多不利影响。提出了一种基于残差混合注意力机制的超分辨率生成对抗网络模型:在生成器的特征提取过程中加入残差块,提升网络深度和学习效果;引入通道注意力与空间注意力机制,提升对图像边缘纹理特征和局部细节的恢复效果;优化损失函数,保留重建图像细节纹理,提升主观质量;通过判别器识别生成器重建图像,实现生成器与判别器的对抗训练,在小样本数据集上优化模型效果。试验证明了该模型在矿井采煤工作面图像超分辨率方面的有效性:所提出的模型算法相较现有主流算法在矿井采煤工作面设备图像数据集的4倍缩放上实现了明显效果提升,峰值信噪比(PSNR)平均提升8.57%,结构相似度(SSIM)平均提升1.43%。

     

    Abstract: Image acquisition in underground coal mining faces is often compromised by uneven illumination, coal dust, and water mist, resulting in low resolution, missing details, and poor texture clarity.These issues hinder the effectiveness of technologies like remote monitoring and machine vision.To address this, we propose a super-resolution generative adversarial network enhanced by a residual hybrid attention mechanism.By incorporating residuals in the generator's feature extraction process, we enhance the network's depth and learning effect.The introduction of channel and spatial attention mechanisms improves the recovery of texture features and local details at image edges.Our optimized loss function ensures that reconstructed images closely resemble real images in terms of high-level semantics and subjective quality, retaining detailed textures and avoiding blurring from averaging.The discriminator recognizes reconstructed images, enabling adversarial training between the generator and discriminator to refine the model using small sample datasets.Experiments demonstrate that our method significantly improves image quality in coal mining face equipment datasets, achieving a 4-fold scaling enhancement.Compared to existing algorithms, our approach increases the peak signal-to-noise ratio (PSNR) by an average of 8.57% and improves structural similarity (SSIM) by an average of 1.43%.

     

/

返回文章
返回