• 中文核心期刊
  • 中国科技核心期刊
  • RCCSE中国核心学术期刊
  • Scopus, DOAJ, CA, AJ, JST收录期刊
高级检索

粒径对褐煤粉尘润湿性的影响研究

张洋, 崔豫楠, 闫晶晶, 李治刚, 郭红光, 李雨成

张洋, 崔豫楠, 闫晶晶, 李治刚, 郭红光, 李雨成. 粒径对褐煤粉尘润湿性的影响研究[J]. 矿业安全与环保, 2022, 49(2): 35-39. DOI: 10.19835/j.issn.1008-4495.2022.02.006
引用本文: 张洋, 崔豫楠, 闫晶晶, 李治刚, 郭红光, 李雨成. 粒径对褐煤粉尘润湿性的影响研究[J]. 矿业安全与环保, 2022, 49(2): 35-39. DOI: 10.19835/j.issn.1008-4495.2022.02.006
ZHANG Yang, CUI Yunan, YAN Jingjing, LI Zhigang, GUO Hongguang, LI Yucheng. Study on the influence of particle size on wettability of lignite dust[J]. Mining Safety & Environmental Protection, 2022, 49(2): 35-39. DOI: 10.19835/j.issn.1008-4495.2022.02.006
Citation: ZHANG Yang, CUI Yunan, YAN Jingjing, LI Zhigang, GUO Hongguang, LI Yucheng. Study on the influence of particle size on wettability of lignite dust[J]. Mining Safety & Environmental Protection, 2022, 49(2): 35-39. DOI: 10.19835/j.issn.1008-4495.2022.02.006

粒径对褐煤粉尘润湿性的影响研究

基金项目: 

国家自然科学基金项目 51774168

国家自然科学基金山西煤基低碳联合基金培育项目 U1810103

详细信息
    作者简介:

    张洋(1997—),男,重庆人,硕士研究生,主要从事矿井粉尘治理研究。E-mail:zhiganglee2009@hotmail.com

  • 中图分类号: TD714; TQ531.1

Study on the influence of particle size on wettability of lignite dust

  • 摘要:

    喷雾降尘技术的降尘效率与煤尘的润湿性密切相关,而煤尘的润湿性受诸多因素影响。为了研究粒径对煤尘润湿性的影响,以内蒙古雁南煤矿4种不同粒径煤粉为研究对象,从接触角、沉降效率、红外光谱、润湿热4个方面探讨粒径对煤尘润湿性的影响规律。研究表明:当煤尘粒径逐渐增大时,接触角则逐渐减小,亲水沉降效果显著;粒径变化没有造成煤尘官能团种类的缺失,但是随着煤尘粒径的减小,含氧官能团减少,煤尘亲水性影响因子减小;润湿热与同种煤尘粒径呈负相关关系,与接触角呈正相关关系,因此可以用润湿热表征不同粒径煤尘润湿性的好坏。研究结果可为提高煤尘润湿效率和矿井煤尘防治技术发展提供一定的参考。

    Abstract:

    The dust removal efficiency of spray dust removal technology is closely related to the wettability of coal dust, which is affected by many factors. In order to study the influence of particle size on the wettability of coal dust, four kinds of coal fines with different particle sizes in Yannan Coal Mine of Inner Mongolia were taken as the research object, and the influence law of particle sizes on wettability of coal dust were discussed from four aspects including contact angle, settling efficiency, infrared spectrum and heat of wetting. The results show that when the particle size increases gradually, the contact angle decreases gradually, and the hydrophilic sedimentation effect is significant; the change of particle size does not cause the loss of functional groups of coal dust, but with the decrease of particle size, the oxygen-containing functional groups decrease, and the hydrophilic influence factor of coal dust decrease; the heat of wetting has a negative correlation with the particle size of the same kind of coal dust and a positive correlation with the contact angle, therefore, heat of wetting can be used to represent the wettability of coal dust of different particle sizes. The research results can provide some references for improving the wettability efficiency of coal dust and the development of coal dust control technology.

  • 图  1   不同粒径煤尘接触角测试结果

    图  2   不同恒定沉降温度下悬浮液煤尘粒径分布曲线

    图  3   不同粒径煤尘的红外光谱图

    图  4   不同粒径煤尘的润湿热流线图

    图  5   煤尘润湿热与接触角的拟合关系图

    表  1   煤粉的工业分析、元素分析结果 单位:%

    工业分析 元素分析
    水分 灰分 挥发分 固定碳 C H O N S
    7.62 33.22 34.37 24.79 40.53 4.26 53.94 0.97 0.30
    注:固定碳与O的质量分数用差减法得出。
    下载: 导出CSV

    表  2   不同粒径煤尘的含氧官能团占比

    粒径/μm 含氧官能团占比/%
    —OH —COOH
    120~180 35.86 14.25
    96~119 33.69 11.39
    75~95 32.26 8.45
    1~74 29.82 5.26
    下载: 导出CSV

    表  3   不同粒径煤尘的润湿热值

    粒径/μm 润湿热值/(J·g-1)
    1~74 28.588
    75~95 22.985
    96~119 20.566
    120~180 10.015
    下载: 导出CSV
  • [1] 黄维刚, 胡夫, 刘楠琴. 表面活性剂对煤尘湿润性能的影响研究[J]. 矿业安全与环保, 2010, 37(3): 4-6. https://ener.cbpt.cnki.net/WKB/WebPublication/paperDigest.aspx?paperID=27f44119-078f-47f5-9c06-3567ac848fd9
    [2]

    PENG H T, NIE W, CAI P, et al. Development of a novel wind-assisted centralized spraying dedusting device for dust suppression in a fully mechanized mining face[J]. Environmental Science and Pollution Research, 2019, 26(4): 3292-3307. doi: 10.1007/s11356-018-3264-8

    [3]

    JIN H, NIE W, ZHANG Y S, et al. Development of environmental friendly dust suppressant based on the modification of soybean protein isolate[J]. Processes, 2019, 7(3): 165. doi: 10.3390/pr7030165

    [4]

    WANG P F, LI Y, LIU R J, et al. Effects of forced-to-exhaust ratio of air volume on dust control of wall-attached swirling ventilation for mechanized excavation face[J]. Tunnelling and Underground Space Technology, 2019, 90(AUG. ): 194-207.

    [5]

    YANG S B, NIE W, LV S S, et al. Effects of spraying pressure and installation angle of nozzles on atomization characteristics of external spraying system at a fully-mechanized mining face[J]. Powder Technology, 2019, 343: 754-764. doi: 10.1016/j.powtec.2018.11.042

    [6] 王惠风, 陈殿赋. 掘进工作面粉尘综合治理技术与实践[J]. 矿业安全与环保, 2020, 47(5): 90-94. https://ener.cbpt.cnki.net/WKB/WebPublication/paperDigest.aspx?paperID=a6819431-b235-445d-b355-7c343d6c6d42
    [7]

    WANG P F, TAN X H, ZHANG L Y, et al. Influence of particle diameter on the wettability of coal dust and the dust suppression efficiency via spraying[J]. Process Safety and Environmental Protection, 2019, 132: 189-199. doi: 10.1016/j.psep.2019.09.031

    [8] 程卫民, 周刚, 陈连军, 等. 我国煤矿粉尘防治理论与技术20年研究进展及展望[J]. 煤炭科学技术, 2020, 48(2): 1-20. https://www.cnki.com.cn/Article/CJFDTOTAL-MTKJ202002001.htm
    [9] 董平, 单忠健, 李哲. 超细煤粉表面润湿性的研究[J]. 煤炭学报, 2004, 29(3): 346-349. doi: 10.3321/j.issn:0253-9993.2004.03.020
    [10] 周刚, 程卫民, 徐翠翠, 等. 不同变质程度煤尘润湿性差异的13C-NMR特征解析[J]. 煤炭学报, 2015, 40(12): 2849-2855. https://www.cnki.com.cn/Article/CJFDTOTAL-MTXB201512015.htm
    [11] 杨静, 伍修锟, 李改平, 等. 煤尘粒度分形特征的研究[J]. 山东科技大学学报(自然科学版), 2010, 29(1): 31-36. https://www.cnki.com.cn/Article/CJFDTOTAL-SDKY201001008.htm
    [12] 程卫民, 徐翠翠, 周刚. 煤尘表面碳、氧基团随变质增加的演化规律及其对润湿性的影响[J]. 燃料化学学报, 2016, 44(3): 295-304. https://www.cnki.com.cn/Article/CJFDTOTAL-RLHX201603006.htm
    [13]

    JIN H, NIE W, ZHANG H H, et al. Preparation and characterization of a novel environmentally friendly coal dust suppressant[J]. Journal of Applied Polymer Science, 2019, 136(17): 47354.

    [14] 赵璐, 张蕾, 文欣, 等. 表面活性剂复配对低阶煤煤尘润湿性的影响[J]. 矿业安全与环保, 2021, 48(1): 39-43. https://ener.cbpt.cnki.net/WKB/WebPublication/paperDigest.aspx?paperID=72163bbf-5505-4f00-a788-cee8ea056119
    [15] 李娇阳, 李凯琦. 煤表面润湿性的影响因素[J]. 煤炭学报, 2016, 41(增刊2): 448-453. https://www.cnki.com.cn/Article/CJFDTOTAL-MTXB2016S2023.htm
    [16] 程卫民, 薛娇, 周刚, 等. 基于红外光谱的煤尘润湿性[J]. 煤炭学报, 2014, 39(11): 2256-2262. https://www.cnki.com.cn/Article/CJFDTOTAL-MTXB201411018.htm
    [17] 刘晓阳, 张雷, 刘生玉, 等. CTAB吸附对褐煤亲水性抑制作用机理的研究[J]. 中国煤炭, 2017, 43(5): 99-104. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGME201705024.htm
    [18] 郭王勇, 鞠振福, 靳昕, 等. 煤尘抑尘剂的润湿性能研究[J]. 矿业安全与环保, 2021, 48(2): 66-70. https://ener.cbpt.cnki.net/WKB/WebPublication/paperDigest.aspx?paperID=c61c2d70-1a5a-4972-bb34-f1875c84c47f
    [19] 王俊. 不同粒径煤尘理化特性及降尘实验研究[D]. 徐州: 中国矿业大学, 2019.
    [20] 李敏. 煤表面含氧官能团的研究[D]. 太原: 太原理工大学, 2004.
    [21] 傅晓恒, 朱书全, 王祖讷, 等. 煤在水中的润湿热与水煤浆成浆性的关系[J]. 选煤技术, 1997(1): 45-47. https://www.cnki.com.cn/Article/CJFDTOTAL-XMJS199701012.htm
  • 期刊类型引用(2)

    1. 乔云霞,陈曦,葛少成,邓存宝,范超男. 煤中侧链官能团与水分子间的量子化学模拟. 矿业安全与环保. 2024(03): 78-84+91 . 本站查看
    2. 冯恒原,李治刚,朱芷涵,栗海滔,张洋,郭红光,陈曦,李雨成,葛少成. 高瓦斯矿井综掘工作面粉尘运移规律及富集特征研究. 中国安全生产科学技术. 2023(10): 59-65 . 百度学术

    其他类型引用(7)

图(5)  /  表(3)
计量
  • 文章访问数:  79
  • HTML全文浏览量:  18
  • PDF下载量:  7
  • 被引次数: 9
出版历程
  • 收稿日期:  2021-05-13
  • 修回日期:  2022-03-29
  • 网络出版日期:  2022-09-19
  • 刊出日期:  2022-04-19

目录

    /

    返回文章
    返回