Experimental study on rapid determination of coal hardiness coefficient by crushing method
-
摘要: 为寻求一种新的煤的坚固性系数(简称“f值”)快速测定方法,以实现煤矿井下工作面煤体f值的现场测定,采用高速旋转机械粉碎煤样的破碎方式开展煤体f值快速测定(简称“粉碎法”)实验研究。根据现场实际及煤样粉碎的正交试验结果,确立了煤样粉碎时间、煤样质量及粉碎机转速的最优参数组合,基于此对不同矿井不同煤层所采集的煤样开展粉碎实验,研究了煤样粉碎后的煤屑在不同粒度区间的质量占比与煤样f值之间的相关关系。结果表明:煤样粉碎后粒度小于0.5 mm的煤屑质量占比与煤样f值的乘幂关系式拟合效果最优,拟合度达0.931 1;同时利用现行测定标准方法“落锤法”对基于“粉碎法”测定的煤样f值结果进行验证,其误差均不超过8%,表明应用“粉碎法”快速测定煤体f值是合理准确且可行的。Abstract: In order to find a new method of rapid determination on coal hardiness coefficient (referred to "f value"), for achieving in-situ determination of coal f value in the underground working face, carried out f value rapid determination method (areferred to "crushing method") laboratory research by high-speed rotating and mechanical crushing of coal sample broken way.According to the actual situation on site and the coal sample crush orthogonal experiment results, the optimal combination of grinding parameters on coal sample crushing time, coal sample quality and grinding speed was established.Based on this, crushing experiments was carried out in coal samples collected from different coal seams in different mines.Correlation between coal f value and coal quality accounted for the proportion with different size fractions after coal sample crushing was studied.The results show that the exponentiation fitting relation of coal cinder quality accounting less than 0.5 mm after the coal sample crushed and coal f value is optimal, and the fitting degree reaches 0.931 1; at the same time, the current measurement standard "drop hammer method" is used to verify the measurement results of crushing method.f value, the measurement error is not more than 8%, it is verified that the established "crushing method" for rapid determination of f value is reasonable and feasible.
-
-
[1] 于不凡.煤矿瓦斯灾害防治及利用技术手册[M].北京:煤炭工业出版社,2005. [2] 张铁岗.矿井瓦斯综合治理技术[M].北京:煤炭工业出版社,2001. [3] 赵旭生,胡千庭,邹银辉,等.深部煤体煤的坚固性系数快速测定原理及其应用[J].煤炭学报,2007,32(1):38-41. [4] 聂百胜,何学秋,王恩元,等.煤与瓦斯突出预测技术研究现状及发展趋势[J].中国安全科学学报,2003,13(6):41-43. [5] 煤和岩石物理力学性质测定方法:GB/T 23561.12—2010[S]. [6] 国家安全生产监督管理总局.煤矿安全规程[M].北京:中国法制出版社,2016:126-128. [7] 张庆华,文光才,邹云龙,等.瓦斯涌出预警指标及其临界值优选方法[J].矿业安全与环保,2014,41(1):23-27. [8] 张玉明.乌兰煤矿7#煤层突出危险性敏感指标及临界值的确定[J].矿业安全与环保,2015,42(3):74-77. [9] 郑克洪,杜长龙,邱冰静.煤矸破碎粒度分布规律的分形特征试验研究[J].煤炭学报,2013,38(6):1089-1094. [10] 丰建荣,刘志河,李志宏,等.煤和矸石静态破碎差别的实验研究[J].太原理工大学学报,2006,37(1):42-43. [11] 徐小荷,余静.岩石破碎学[M].北京:煤炭工业出版社,1984. [12] 焦作矿业学院瓦斯地质研究室.瓦斯地质概论[M].北京:煤炭工业出版社,1990. [13] 蔡成功,王魁军.煤坚固性系数f测定中若干问题探讨[J].中国矿业大学学报,1996,25(2):82-86. [14] 姬振豫.正交设计的方法与理论[M].中国香港:世界科技出版社,2000. -
期刊类型引用(2)
1. 于化龙,王海军,吴艳,刘善德,肖文钊,杨香. 煤体坚固性系数井下快速测定方法. 建井技术. 2025(01): 44-48 . 百度学术
2. 闫静,孙臣. 低温对不同水分条件下煤的坚固性系数影响研究. 能源与环保. 2021(04): 156-160 . 百度学术
其他类型引用(0)
计量
- 文章访问数: 41
- HTML全文浏览量: 0
- PDF下载量: 7
- 被引次数: 2